import json
import urllib.request
from glob import glob
import pandas as pd
import geopandas
dataset_id = '6569b51ae64326786e4e8e1a'
url = f'https://www.data.gouv.fr/api/1/datasets/{dataset_id}/'
with urllib.request.urlopen(url) as resp:
json_content = json.load(resp)
urls = [resource.get('url') for resource in json_content.get('resources') if 'RR-T-Vent' in resource.get('url') and resource.get('type') != 'documentation']
mydict = {}
for url, dep in [[url, url.split('/')[-1].split('_')[1]] for url in urls]:
if dep not in mydict:
mydict[dep] = []
mydict[dep].append(url)
for dep,values in mydict.items():
frames = [pd.read_csv(url, compression='gzip', sep=';', quotechar='"') for url in values]
df = pd.concat(frames)
stations = df[['NUM_POSTE', 'NOM_USUEL', 'LAT', 'LON', 'ALTI', 'AAAAMMJJ']]
stations['AAAAMMJJ'] = pd.to_datetime(stations['AAAAMMJJ'], format = '%Y%m%d')
stations['MIN_DATE'] = stations.groupby(['NUM_POSTE'])['AAAAMMJJ'].transform('min')
stations['MAX_DATE'] = stations.groupby(['NUM_POSTE'])['AAAAMMJJ'].transform('max')
stations.drop(columns=['AAAAMMJJ'], inplace=True)
stations.reset_index().drop_duplicates('NUM_POSTE').drop(columns=['index']).to_csv(f'stations-RR-T-Vent-dep-{dep}.csv', index=False)
files_stations_rr_t_vent = glob('stations-RR-T-Vent-dep-*.csv')
frames_stations_rr_t_vent = [pd.read_csv(input_file) for input_file in files_stations_rr_t_vent]
df_stations_rr_t_vent = pd.concat(frames_stations_rr_t_vent)
gdf_stations_rr_t_vent = geopandas.GeoDataFrame(
df_stations_rr_t_vent, geometry=geopandas.points_from_xy(df_stations_rr_t_vent.LON, df_stations_rr_t_vent.LAT), crs="EPSG:4326"
)
gdf_stations_rr_t_vent.to_file('stations_rr_t_vent.geojson', driver='GeoJSON')
Created
April 8, 2024 11:17
-
-
Save ThomasG77/2b06db34a793044561452395248fc9f3 to your computer and use it in GitHub Desktop.
Generate daily stations from meteo france data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import urllib.request | |
from glob import glob | |
import pandas as pd | |
import geopandas | |
dataset_id = '6569b51ae64326786e4e8e1a' | |
url = f'https://www.data.gouv.fr/api/1/datasets/{dataset_id}/' | |
with urllib.request.urlopen(url) as resp: | |
json_content = json.load(resp) | |
urls = [resource.get('url') for resource in json_content.get('resources') if 'RR-T-Vent' in resource.get('url') and resource.get('type') != 'documentation'] | |
mydict = {} | |
for url, dep in [[url, url.split('/')[-1].split('_')[1]] for url in urls]: | |
if dep not in mydict: | |
mydict[dep] = [] | |
mydict[dep].append(url) | |
for dep,values in mydict.items(): | |
frames = [pd.read_csv(url, compression='gzip', sep=';', quotechar='"') for url in values] | |
df = pd.concat(frames) | |
stations = df[['NUM_POSTE', 'NOM_USUEL', 'LAT', 'LON', 'ALTI', 'AAAAMMJJ']] | |
stations['AAAAMMJJ'] = pd.to_datetime(stations['AAAAMMJJ'], format = '%Y%m%d') | |
stations['MIN_DATE'] = stations.groupby(['NUM_POSTE'])['AAAAMMJJ'].transform('min') | |
stations['MAX_DATE'] = stations.groupby(['NUM_POSTE'])['AAAAMMJJ'].transform('max') | |
stations.drop(columns=['AAAAMMJJ'], inplace=True) | |
stations.reset_index().drop_duplicates('NUM_POSTE').drop(columns=['index']).to_csv(f'stations-RR-T-Vent-dep-{dep}.csv', index=False) | |
files_stations_rr_t_vent = glob('stations-RR-T-Vent-dep-*.csv') | |
frames_stations_rr_t_vent = [pd.read_csv(input_file) for input_file in files_stations_rr_t_vent] | |
df_stations_rr_t_vent = pd.concat(frames_stations_rr_t_vent) | |
gdf_stations_rr_t_vent = geopandas.GeoDataFrame( | |
df_stations_rr_t_vent, geometry=geopandas.points_from_xy(df_stations_rr_t_vent.LON, df_stations_rr_t_vent.LAT), crs="EPSG:4326" | |
) | |
gdf_stations_rr_t_vent.to_file('stations_rr_t_vent.geojson', driver='GeoJSON') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment