Skip to content

Instantly share code, notes, and snippets.

@ramnathv
Last active December 11, 2015 07:19
Show Gist options
  • Select an option

  • Save ramnathv/4565745 to your computer and use it in GitHub Desktop.

Select an option

Save ramnathv/4565745 to your computer and use it in GitHub Desktop.
Brew with knitR
# Preprocess template using brew and then run knit
brew_knit <- function(template, ...){
input = gsub(".Rnwe", '.Rnw', template)
brew(template, input)
knit(input, ...)
}
\section{Analysis of Hip Bone Mineral Density}
\subsection{26w BMD and Baseline Predictors}
In this section I model 26w interpolated BMD using baseline BMD (all four measures, not just the target measure), baseline weight, age,sex, race, \$t\$-score stratum, and treatment. I first fit a saturatedmodel with respect to all of the continuous predictors, using restricted cubic splines with 5 knots, then potentially use partial \$\chi^2\$ (blinded to nonlinearity components) to reassign degrees of freedom.
<< hip-sat26,results="asis", eval = F>>=
f <- ols(hip26 ~ sex*rcs(hip0,5) +
rcs(lumbar0,5) + rcs(femur0,5) +
rcs(forearm0,5) + sex*rcs(wt0, 5) + trtp +
rcs(age, 5) + race + sex + blppar + bltscgrp, data=d)
print(f, coefs = FALSE, latex = TRUE)
lan(f)
@
The global test for nonlinearity is nowhere close to being significant, so all nonlinear effects will be dropped.
\section{Analysis of Lumbar Bone Mineral Density}
\subsection{26w BMD and Baseline Predictors}
In this section I model 26w interpolated BMD using baseline BMD (all four measures, not just the target measure), baseline weight, age,sex, race, \$t\$-score stratum, and treatment. I first fit a saturatedmodel with respect to all of the continuous predictors, using restricted cubic splines with 5 knots, then potentially use partial \$\chi^2\$ (blinded to nonlinearity components) to reassign degrees of freedom.
<< lumbar-sat26,results="asis", eval = F>>=
f <- ols(lumbar26 ~ sex*rcs(lumbar0,5) +
rcs(hip0,5) + rcs(femur0,5) +
rcs(forearm0,5) + sex*rcs(wt0, 5) + trtp +
rcs(age, 5) + race + sex + blppar + bltscgrp, data=d)
print(f, coefs = FALSE, latex = TRUE)
lan(f)
@
The global test for nonlinearity is nowhere close to being significant, so all nonlinear effects will be dropped.
\section{Analysis of Femur Bone Mineral Density}
\subsection{26w BMD and Baseline Predictors}
In this section I model 26w interpolated BMD using baseline BMD (all four measures, not just the target measure), baseline weight, age,sex, race, \$t\$-score stratum, and treatment. I first fit a saturatedmodel with respect to all of the continuous predictors, using restricted cubic splines with 5 knots, then potentially use partial \$\chi^2\$ (blinded to nonlinearity components) to reassign degrees of freedom.
<< femur-sat26,results="asis", eval = F>>=
f <- ols(femur26 ~ sex*rcs(femur0,5) +
rcs(hip0,5) + rcs(lumbar0,5) +
rcs(forearm0,5) + sex*rcs(wt0, 5) + trtp +
rcs(age, 5) + race + sex + blppar + bltscgrp, data=d)
print(f, coefs = FALSE, latex = TRUE)
lan(f)
@
The global test for nonlinearity is nowhere close to being significant, so all nonlinear effects will be dropped.
\section{Analysis of Forearm Bone Mineral Density}
\subsection{26w BMD and Baseline Predictors}
In this section I model 26w interpolated BMD using baseline BMD (all four measures, not just the target measure), baseline weight, age,sex, race, \$t\$-score stratum, and treatment. I first fit a saturatedmodel with respect to all of the continuous predictors, using restricted cubic splines with 5 knots, then potentially use partial \$\chi^2\$ (blinded to nonlinearity components) to reassign degrees of freedom.
<< forearm-sat26,results="asis", eval = F>>=
f <- ols(forearm26 ~ sex*rcs(forearm0,5) +
rcs(hip0,5) + rcs(lumbar0,5) +
rcs(femur0,5) + sex*rcs(wt0, 5) + trtp +
rcs(age, 5) + race + sex + blppar + bltscgrp, data=d)
print(f, coefs = FALSE, latex = TRUE)
lan(f)
@
The global test for nonlinearity is nowhere close to being significant, so all nonlinear effects will be dropped.
<% v = c("hip", "lumbar", "femur", "forearm") -%>
<% oth1 = c("lumbar", "hip", "hip", "hip") -%>
<% oth2 = c("femur", "femur", "lumbar", "lumbar") -%>
<% oth3 = c("forearm", "forearm", "forearm", "femur") -%>
<% for (i in 1:4) { -%>
<% title = gsub('^([a-z])', '\\U\\1', v[i], perl = T) %>
\section{Analysis of <%= title %> Bone Mineral Density}
\subsection{26w BMD and Baseline Predictors}
In this section I model 26w interpolated BMD using baseline BMD (all four measures, not just the target measure), baseline weight, age,sex, race, \$t\$-score stratum, and treatment. I first fit a saturatedmodel with respect to all of the continuous predictors, using restricted cubic splines with 5 knots, then potentially use partial \$\chi^2\$ (blinded to nonlinearity components) to reassign degrees of freedom.
<< <%= v[i] %>-sat26,results="asis", eval = F>>=
f <- ols(<%= v[i] %>26 ~ sex*rcs(<%= v[i] %>0,5) +
rcs(<%= oth1[i] %>0,5) + rcs(<%= oth2[i] %>0,5) +
rcs(<%= oth3[i] %>0,5) + sex*rcs(wt0, 5) + trtp +
rcs(age, 5) + race + sex + blppar + bltscgrp, data=d)
print(f, coefs = FALSE, latex = TRUE)
lan(f)
@
The global test for nonlinearity is nowhere close to being significant, so all nonlinear effects will be dropped.
<% } %>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment