Last active
January 22, 2020 22:07
-
-
Save cavedave/c43ff9b7da10724330b520099b375b35 to your computer and use it in GitHub Desktop.
World gdp growth rates by region
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Country | Continent | random | randomC | |
---|---|---|---|---|
Algeria | AFRICA | 60.6167300016224 | 61 | |
Angola | AFRICA | 71.5212095913241 | 72 | |
Benin | AFRICA | 51.7624535957612 | 52 | |
Botswana | AFRICA | 15.7730987774009 | 16 | |
Burkina | AFRICA | 43.4650351116097 | 44 | |
Burundi | AFRICA | 65.5623808542023 | 66 | |
Cameroon | AFRICA | 50.6499306806902 | 51 | |
Cape Verde | AFRICA | 13.4829147803843 | 14 | |
Central African Republic | AFRICA | 17.8374229865049 | 18 | |
Chad | AFRICA | 29.924381836669 | 30 | |
Comoros | AFRICA | 71.4692715596517 | 72 | |
Congo | AFRICA | 37.2450618758762 | 38 | |
Congo, Democratic Republic of | AFRICA | 7.82166481236349 | 8 | |
Djibouti | AFRICA | 72.2313116479816 | 73 | |
Egypt | AFRICA | 47.6374570093139 | 48 | |
Equatorial Guinea | AFRICA | 60.8276744520727 | 61 | |
Eritrea | AFRICA | 50.4594349319479 | 51 | |
Ethiopia | AFRICA | 20.4307033690226 | 21 | |
Gabon | AFRICA | 8.00888406164509 | 9 | |
Gambia | AFRICA | 96.1342705396023 | 97 | |
Ghana | AFRICA | 32.2011682222616 | 33 | |
Guinea | AFRICA | 63.0052737426284 | 64 | |
Guinea-Bissau | AFRICA | 65.6684702230086 | 66 | |
Ivory Coast | AFRICA | 89.0525038027716 | 90 | |
Kenya | AFRICA | 31.5108347528361 | 32 | |
Lesotho | AFRICA | 69.8298656158086 | 70 | |
Liberia | AFRICA | 54.0246444613355 | 55 | |
Libya | AFRICA | 29.3832670235385 | 30 | |
Madagascar | AFRICA | 17.6137309263152 | 18 | |
Malawi | AFRICA | 65.1967144592625 | 66 | |
Mali | AFRICA | 93.8250351534233 | 94 | |
Mauritania | AFRICA | 40.7110860184194 | 41 | |
Mauritius | AFRICA | 48.7838460294809 | 49 | |
Morocco | AFRICA | 90.5541180758008 | 91 | |
Mozambique | AFRICA | 61.0685656552458 | 62 | |
Namibia | AFRICA | 38.343361776327 | 39 | |
Niger | AFRICA | 16.4729179045592 | 17 | |
Nigeria | AFRICA | 87.2675694596433 | 88 | |
Rwanda | AFRICA | 13.166351009014 | 14 | |
Sao Tome and Principe | AFRICA | 90.0182837345859 | 91 | |
Senegal | AFRICA | 37.8485308501602 | 38 | |
Seychelles | AFRICA | 30.1871843891817 | 31 | |
Sierra Leone | AFRICA | 56.2564920047803 | 57 | |
Somalia | AFRICA | 93.6179765515136 | 94 | |
South Africa | AFRICA | 39.5096127001066 | 40 | |
South Sudan | AFRICA | 32.3402098734751 | 33 | |
Sudan | AFRICA | 11.7553759435875 | 12 | |
Swaziland | AFRICA | 80.4614919445087 | 81 | |
Tanzania | AFRICA | 89.5178679574181 | 90 | |
Togo | AFRICA | 51.6577608675679 | 52 | |
Tunisia | AFRICA | 38.8429571480379 | 39 | |
Uganda | AFRICA | 47.8952280291542 | 48 | |
Zambia | AFRICA | 63.2637659636957 | 64 | |
Zimbabwe | AFRICA | 52.1931520254656 | 53 | |
Afghanistan | ASIA | 41.7414112810643 | 42 | |
Bahrain | ASIA | 83.6420885996847 | 84 | |
Bangladesh | ASIA | 87.6928396619939 | 88 | |
Bhutan | ASIA | 30.987062267755 | 31 | |
Brunei | ASIA | 43.4605914527885 | 44 | |
Burma (Myanmar) | ASIA | 88.2075485875595 | 89 | |
Cambodia | ASIA | 96.7845379189223 | 97 | |
China | ASIA | 22.7542522156107 | 23 | |
East Timor | ASIA | 45.7987973935801 | 46 | |
India | ASIA | 9.84720142126543 | 10 | |
Indonesia | ASIA | 58.0493093489922 | 59 | |
Iran | ASIA | 90.7267139150375 | 91 | |
Iraq | ASIA | 10.2039458048294 | 11 | |
Israel | ASIA | 35.9870711615945 | 36 | |
Japan | ASIA | 65.3176734919355 | 66 | |
Jordan | ASIA | 25.0749728901542 | 26 | |
Kazakhstan | ASIA | 74.0064053552349 | 75 | |
Korea, North | ASIA | 59.517103824574 | 60 | |
Korea, South | ASIA | 19.7413560531922 | 20 | |
Kuwait | ASIA | 33.4960476397987 | 34 | |
Kyrgyzstan | ASIA | 42.3478822425574 | 43 | |
Laos | ASIA | 87.8939399370659 | 88 | |
Lebanon | ASIA | 41.4559002893637 | 42 | |
Malaysia | ASIA | 93.5890287289432 | 94 | |
Maldives | ASIA | 46.8233988327355 | 47 | |
Mongolia | ASIA | 97.3567298647253 | 98 | |
Nepal | ASIA | 27.3954135905726 | 28 | |
Oman | ASIA | 59.0593907938577 | 60 | |
Pakistan | ASIA | 16.5969613733266 | 17 | |
Philippines | ASIA | 53.3176095049627 | 54 | |
Qatar | ASIA | 93.4443941462758 | 94 | |
Russian Federation | ASIA | 81.7138557069442 | 82 | |
Saudi Arabia | ASIA | 36.9816802766212 | 37 | |
Singapore | ASIA | 71.5391144607582 | 72 | |
Sri Lanka | ASIA | 61.6743111793183 | 62 | |
Syria | ASIA | 82.8514062102289 | 83 | |
Tajikistan | ASIA | 94.6143650191239 | 95 | |
Thailand | ASIA | 76.0844294241207 | 77 | |
Turkey | ASIA | 50.3744302487417 | 51 | |
Turkmenistan | ASIA | 56.5736092757109 | 57 | |
United Arab Emirates | ASIA | 67.0892662215485 | 68 | |
Uzbekistan | ASIA | 88.5925292642167 | 89 | |
Vietnam | ASIA | 62.2442448607378 | 63 | |
Yemen | ASIA | 28.9261304666786 | 29 | |
Albania | EUROPE | 31.9302882764087 | 32 | |
Andorra | EUROPE | 37.1898947085438 | 38 | |
Armenia | EUROPE | 82.9464411489346 | 83 | |
Austria | EUROPE | 57.5670321627154 | 58 | |
Azerbaijan | EUROPE | 79.0320390507358 | 80 | |
Belarus | EUROPE | 33.8331616606583 | 34 | |
Belgium | EUROPE | 27.2297747146218 | 28 | |
Bosnia and Herzegovina | EUROPE | 77.2198908717871 | 78 | |
Bulgaria | EUROPE | 83.330001524536 | 84 | |
Croatia | EUROPE | 77.8402007886649 | 78 | |
Cyprus | EUROPE | 51.5746698243359 | 52 | |
Czech Republic | EUROPE | 23.8606214648663 | 24 | |
Denmark | EUROPE | 73.5277310112556 | 74 | |
Estonia | EUROPE | 89.2741188761241 | 90 | |
Finland | EUROPE | 54.1415688884643 | 55 | |
France | EUROPE | 52.9147553934293 | 53 | |
Georgia | EUROPE | 64.7581324731776 | 65 | |
Germany | EUROPE | 23.9368842488435 | 24 | |
Greece | EUROPE | 32.9503748810979 | 33 | |
Hungary | EUROPE | 43.427168739971 | 44 | |
Iceland | EUROPE | 14.778460045693 | 15 | |
Ireland | EUROPE | 85.885247386953 | 86 | |
Italy | EUROPE | 59.5685779807038 | 60 | |
Latvia | EUROPE | 66.5809003749686 | 67 | |
Liechtenstein | EUROPE | 41.5971142280833 | 42 | |
Lithuania | EUROPE | 44.0258020960584 | 45 | |
Luxembourg | EUROPE | 83.2929859819699 | 84 | |
Macedonia | EUROPE | 95.2839525632425 | 96 | |
Malta | EUROPE | 58.5818494018854 | 59 | |
Moldova | EUROPE | 87.1478886856595 | 88 | |
Monaco | EUROPE | 78.9060687252128 | 79 | |
Montenegro | EUROPE | 68.9755292911948 | 69 | |
Netherlands | EUROPE | 76.6603027744751 | 77 | |
Norway | EUROPE | 91.0854582162888 | 92 | |
Poland | EUROPE | 0.386688652785589 | 1 | |
Portugal | EUROPE | 21.1093754726772 | 22 | |
Romania | EUROPE | 20.2660331713941 | 21 | |
San Marino | EUROPE | 75.4150342304565 | 76 | |
Serbia | EUROPE | 40.9894042466659 | 41 | |
Slovakia | EUROPE | 50.597902950745 | 51 | |
Slovenia | EUROPE | 44.4856901562959 | 45 | |
Spain | EUROPE | 6.38430953895731 | 7 | |
Sweden | EUROPE | 93.1185369240532 | 94 | |
Switzerland | EUROPE | 69.9825604085906 | 70 | |
Ukraine | EUROPE | 0.307435944042224 | 1 | |
United Kingdom | EUROPE | 28.0060847527685 | 29 | |
Vatican City | EUROPE | 35.751487250501 | 36 | |
Antigua and Barbuda | N. AMERICA | 82.8037254708978 | 83 | |
Bahamas | N. AMERICA | 50.0405384610616 | 51 | |
Barbados | N. AMERICA | 89.2032630821603 | 90 | |
Belize | N. AMERICA | 51.6447017353713 | 52 | |
Canada | N. AMERICA | 75.1850164135689 | 76 | |
Costa Rica | N. AMERICA | 46.9799454317141 | 47 | |
Cuba | N. AMERICA | 49.7339578490649 | 50 | |
Dominica | N. AMERICA | 31.2100599563296 | 32 | |
Dominican Republic | N. AMERICA | 16.6057911750866 | 17 | |
El Salvador | N. AMERICA | 53.5968526207674 | 54 | |
Grenada | N. AMERICA | 76.2273582408734 | 77 | |
Guatemala | N. AMERICA | 66.4496748710394 | 67 | |
Haiti | N. AMERICA | 27.3331705195688 | 28 | |
Honduras | N. AMERICA | 12.1352682601282 | 13 | |
Jamaica | N. AMERICA | 61.0757445209222 | 62 | |
Mexico | N. AMERICA | 58.7025891350084 | 59 | |
Nicaragua | N. AMERICA | 57.0769113165023 | 58 | |
Panama | N. AMERICA | 75.6396109985276 | 76 | |
Saint Kitts and Nevis | N. AMERICA | 52.258197822752 | 53 | |
Saint Lucia | N. AMERICA | 38.2821943627656 | 39 | |
Saint Vincent and the Grenadines | N. AMERICA | 95.1443461241663 | 96 | |
Trinidad and Tobago | N. AMERICA | 10.2846177428616 | 11 | |
United States | N. AMERICA | 32.4440793935977 | 33 | |
Australia | OCEANIA | 27.1816429743819 | 28 | |
Fiji | OCEANIA | 75.6725124293908 | 76 | |
Kiribati | OCEANIA | 57.7189775158871 | 58 | |
Marshall Islands | OCEANIA | 77.437997315951 | 78 | |
Micronesia | OCEANIA | 52.3076053862099 | 53 | |
Nauru | OCEANIA | 35.9217477786092 | 36 | |
New Zealand | OCEANIA | 82.4372521083138 | 83 | |
Palau | OCEANIA | 20.8939721765936 | 21 | |
Papua New Guinea | OCEANIA | 97.8853262107647 | 98 | |
Samoa | OCEANIA | 12.6836792492572 | 13 | |
Solomon Islands | OCEANIA | 29.3566389933936 | 30 | |
Tonga | OCEANIA | 8.61883267529269 | 9 | |
Tuvalu | OCEANIA | 68.9900117795411 | 69 | |
Vanuatu | OCEANIA | 21.1025209925495 | 22 | |
Argentina | S. AMERICA | 82.9618984739205 | 83 | |
Bolivia | S. AMERICA | 15.9077221230356 | 16 | |
Brazil | S. AMERICA | 92.2751355693951 | 93 | |
Chile | S. AMERICA | 12.0016352639622 | 13 | |
Colombia | S. AMERICA | 35.2721144080479 | 36 | |
Ecuador | S. AMERICA | 73.0152115408201 | 74 | |
Guyana | S. AMERICA | 6.92037675353188 | 7 | |
Paraguay | S. AMERICA | 30.4515723473095 | 31 | |
Peru | S. AMERICA | 52.9516415910102 | 53 | |
Suriname | S. AMERICA | 51.2210352712741 | 52 | |
Uruguay | S. AMERICA | 5.02272509577985 | 6 | |
Venezuela | S. AMERICA | 28.7356946537238 | 29 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data <- read.csv("countriesGates.csv") | |
data$Country <- factor(data$Country, levels = data$Country) | |
#make a simple graph | |
ggplot(data, aes(x=Country, y=randomC, color=Continent,group = Continent)) + | |
geom_bar(stat="identity") | |
#more complicated picture | |
ggplot(data, aes(x=Country, y=randomC, color=Continent,group = Continent)) + | |
geom_bar(stat="identity") + coord_polar(theta = "x") | |
# | |
sequence_length = length(unique(small$Country)) | |
first_sequence = c(1:(sequence_length%/%2)) | |
second_sequence = c((sequence_length%/%2+1):sequence_length) | |
first_angles =c(90 - 180/length(first_sequence) * first_sequence) | |
second_angles = c(-90 - 180/length(second_sequence) * second_sequence) | |
p<-ggplot(small, aes(x=bothG, y=Growth.Rate.., fill=Continent,group = Continent)) + | |
geom_bar(stat="identity") + coord_polar()+ | |
theme(plot.caption = element_text(hjust=0.5,vjust=-0.5, size=rel(6)), | |
axis.text.y=element_blank(),axis.ticks=element_blank(), | |
axis.title.x=element_blank(), | |
axis.title.y=element_blank(),legend.position="none", | |
panel.background=element_blank(),panel.border=element_blank(),panel.grid.major=element_blank(), | |
panel.grid.minor=element_blank(),plot.background=element_blank(), | |
axis.text.x=element_text(angle= c(second_angles),size=15), | |
plot.margin=unit(c(1,1,1.5,1.2),"cm") | |
) | |
p <- p + | |
annotate("text", x = 18, y = 3.3, | |
label = "Africa", size=10, colour="red",alpha = .9) | |
p <- p + | |
annotate("text", x = 52, y = 3, | |
label = "Asia", size=10, colour="#ffdb58",alpha = .99) | |
p <- p + | |
annotate("text", x = 95, y = 3, | |
label = "Europe", size=10, colour="green",alpha = .9) | |
p <- p + | |
annotate("text", x = 105 | |
, y = 3, | |
label = "N. America", size=10, colour="#00CED1",alpha = .99) | |
p <- p + annotate("text", x = 120, y = 3, | |
label = "Oceania", size=10, colour="darkblue",alpha = .9) | |
p <- p + | |
annotate("text", x = 125, y = 3, | |
label = "S. America", size=10, colour="purple",alpha = .9) | |
p <- p + | |
scale_fill_manual(values = alpha(c("green", "red", "darkblue", "yellow","pink","purple"), .3),aesthetics = "colour") | |
#p<-p + ggtitle("Population Growth", size=12) | |
p <- p + labs(caption = "Population Growth Rate") | |
ggsave('GrowthMore4Mil.png', width=20, height=20) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I saw this graph Bill Gates posted and I wanted to create something similar https://www.reddit.com/r/Infographics/comments/aulqu1/africa_is_the_youngest_continent/?sort=old
Data from Countries and Continents from https://www.worldatlas.com/cntycont.htm (which does not contain Palestine and Taiwan) Growth rates from http://worldpopulationreview.com/countries/
This graph only contains countries of size more than than 4 million. 121 countries of this size or 194 in total. So the graph is much clearer only looking at larger countries.
R package GGplot2 code. From various dplyr hacking the two datasets get combined to look like. I can do a full write up of the steps if people want it.
Country Continent Growth.Rate bothG
...
Algeria AFRICA 1.60 Algeria 1.6 2
Angola AFRICA 3.29 Angola 3.29
Benin AFRICA 2.75 Benin 2.75