This interrupted homolosine projection is available as d3.geoInterruptedHomolosine in d3-geo-projection.
Showing the inverse projection for issue #97.
Forked from mbostock's block: Interrupted Homolosine
license: gpl-3.0 | |
border: no | |
height: 484 |
This interrupted homolosine projection is available as d3.geoInterruptedHomolosine in d3-geo-projection.
Showing the inverse projection for issue #97.
Forked from mbostock's block: Interrupted Homolosine
// https://d3js.org/d3-geo-projection/ Version 1.2.1. Copyright 2017 Mike Bostock. | |
(function (global, factory) { | |
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-geo'), require('d3-array')) : | |
typeof define === 'function' && define.amd ? define(['exports', 'd3-geo', 'd3-array'], factory) : | |
(factory((global.d3 = global.d3 || {}),global.d3,global.d3)); | |
}(this, (function (exports,d3Geo,d3Array) { 'use strict'; | |
var abs = Math.abs; | |
var atan = Math.atan; | |
var atan2 = Math.atan2; | |
var cos = Math.cos; | |
var exp = Math.exp; | |
var floor = Math.floor; | |
var log = Math.log; | |
var max = Math.max; | |
var min = Math.min; | |
var pow = Math.pow; | |
var round = Math.round; | |
var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; }; | |
var sin = Math.sin; | |
var tan = Math.tan; | |
var epsilon = 1e-6; | |
var epsilon2 = 1e-12; | |
var pi = Math.PI; | |
var halfPi = pi / 2; | |
var quarterPi = pi / 4; | |
var sqrt1_2 = Math.SQRT1_2; | |
var sqrt2 = sqrt(2); | |
var sqrtPi = sqrt(pi); | |
var tau = pi * 2; | |
var degrees = 180 / pi; | |
var radians = pi / 180; | |
function sinci(x) { | |
return x ? x / Math.sin(x) : 1; | |
} | |
function asin(x) { | |
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x); | |
} | |
function acos(x) { | |
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x); | |
} | |
function sqrt(x) { | |
return x > 0 ? Math.sqrt(x) : 0; | |
} | |
function tanh(x) { | |
x = exp(2 * x); | |
return (x - 1) / (x + 1); | |
} | |
function sinh(x) { | |
return (exp(x) - exp(-x)) / 2; | |
} | |
function cosh(x) { | |
return (exp(x) + exp(-x)) / 2; | |
} | |
function arsinh(x) { | |
return log(x + sqrt(x * x + 1)); | |
} | |
function arcosh(x) { | |
return log(x + sqrt(x * x - 1)); | |
} | |
function airyRaw(beta) { | |
var tanBeta_2 = tan(beta / 2), | |
b = 2 * log(cos(beta / 2)) / (tanBeta_2 * tanBeta_2); | |
function forward(x, y) { | |
var cosx = cos(x), | |
cosy = cos(y), | |
siny = sin(y), | |
cosz = cosy * cosx, | |
k = -((1 - cosz ? log((1 + cosz) / 2) / (1 - cosz) : -0.5) + b / (1 + cosz)); | |
return [k * cosy * sin(x), k * siny]; | |
} | |
forward.invert = function(x, y) { | |
var r = sqrt(x * x + y * y), | |
z = -beta / 2, | |
i = 50, delta; | |
if (!r) return [0, 0]; | |
do { | |
var z_2 = z / 2, | |
cosz_2 = cos(z_2), | |
sinz_2 = sin(z_2), | |
tanz_2 = tan(z_2), | |
lnsecz_2 = log(1 / cosz_2); | |
z -= delta = (2 / tanz_2 * lnsecz_2 - b * tanz_2 - r) / (-lnsecz_2 / (sinz_2 * sinz_2) + 1 - b / (2 * cosz_2 * cosz_2)); | |
} while (abs(delta) > epsilon && --i > 0); | |
var sinz = sin(z); | |
return [atan2(x * sinz, r * cos(z)), asin(y * sinz / r)]; | |
}; | |
return forward; | |
} | |
var airy = function() { | |
var beta = halfPi, | |
m = d3Geo.geoProjectionMutator(airyRaw), | |
p = m(beta); | |
p.radius = function(_) { | |
return arguments.length ? m(beta = _ * radians) : beta * degrees; | |
}; | |
return p | |
.scale(179.976) | |
.clipAngle(147); | |
}; | |
function aitoffRaw(x, y) { | |
var cosy = cos(y), sincia = sinci(acos(cosy * cos(x /= 2))); | |
return [2 * cosy * sin(x) * sincia, sin(y) * sincia]; | |
} | |
// Abort if [x, y] is not within an ellipse centered at [0, 0] with | |
// semi-major axis pi and semi-minor axis pi/2. | |
aitoffRaw.invert = function(x, y) { | |
if (x * x + 4 * y * y > pi * pi + epsilon) return; | |
var x1 = x, y1 = y, i = 25; | |
do { | |
var sinx = sin(x1), | |
sinx_2 = sin(x1 / 2), | |
cosx_2 = cos(x1 / 2), | |
siny = sin(y1), | |
cosy = cos(y1), | |
sin_2y = sin(2 * y1), | |
sin2y = siny * siny, | |
cos2y = cosy * cosy, | |
sin2x_2 = sinx_2 * sinx_2, | |
c = 1 - cos2y * cosx_2 * cosx_2, | |
e = c ? acos(cosy * cosx_2) * sqrt(f = 1 / c) : f = 0, | |
f, | |
fx = 2 * e * cosy * sinx_2 - x, | |
fy = e * siny - y, | |
dxdx = f * (cos2y * sin2x_2 + e * cosy * cosx_2 * sin2y), | |
dxdy = f * (0.5 * sinx * sin_2y - e * 2 * siny * sinx_2), | |
dydx = f * 0.25 * (sin_2y * sinx_2 - e * siny * cos2y * sinx), | |
dydy = f * (sin2y * cosx_2 + e * sin2x_2 * cosy), | |
z = dxdy * dydx - dydy * dxdx; | |
if (!z) break; | |
var dx = (fy * dxdy - fx * dydy) / z, | |
dy = (fx * dydx - fy * dxdx) / z; | |
x1 -= dx, y1 -= dy; | |
} while ((abs(dx) > epsilon || abs(dy) > epsilon) && --i > 0); | |
return [x1, y1]; | |
}; | |
var aitoff = function() { | |
return d3Geo.geoProjection(aitoffRaw) | |
.scale(152.63); | |
}; | |
function armadilloRaw(phi0) { | |
var sinPhi0 = sin(phi0), | |
cosPhi0 = cos(phi0), | |
sPhi0 = phi0 >= 0 ? 1 : -1, | |
tanPhi0 = tan(sPhi0 * phi0), | |
k = (1 + sinPhi0 - cosPhi0) / 2; | |
function forward(lambda, phi) { | |
var cosPhi = cos(phi), | |
cosLambda = cos(lambda /= 2); | |
return [ | |
(1 + cosPhi) * sin(lambda), | |
(sPhi0 * phi > -atan2(cosLambda, tanPhi0) - 1e-3 ? 0 : -sPhi0 * 10) + k + sin(phi) * cosPhi0 - (1 + cosPhi) * sinPhi0 * cosLambda // TODO D3 core should allow null or [NaN, NaN] to be returned. | |
]; | |
} | |
forward.invert = function(x, y) { | |
var lambda = 0, | |
phi = 0, | |
i = 50; | |
do { | |
var cosLambda = cos(lambda), | |
sinLambda = sin(lambda), | |
cosPhi = cos(phi), | |
sinPhi = sin(phi), | |
A = 1 + cosPhi, | |
fx = A * sinLambda - x, | |
fy = k + sinPhi * cosPhi0 - A * sinPhi0 * cosLambda - y, | |
dxdLambda = A * cosLambda / 2, | |
dxdPhi = -sinLambda * sinPhi, | |
dydLambda = sinPhi0 * A * sinLambda / 2, | |
dydPhi = cosPhi0 * cosPhi + sinPhi0 * cosLambda * sinPhi, | |
denominator = dxdPhi * dydLambda - dydPhi * dxdLambda, | |
dLambda = (fy * dxdPhi - fx * dydPhi) / denominator / 2, | |
dPhi = (fx * dydLambda - fy * dxdLambda) / denominator; | |
lambda -= dLambda, phi -= dPhi; | |
} while ((abs(dLambda) > epsilon || abs(dPhi) > epsilon) && --i > 0); | |
return sPhi0 * phi > -atan2(cos(lambda), tanPhi0) - 1e-3 ? [lambda * 2, phi] : null; | |
}; | |
return forward; | |
} | |
var armadillo = function() { | |
var phi0 = 20 * radians, | |
sPhi0 = phi0 >= 0 ? 1 : -1, | |
tanPhi0 = tan(sPhi0 * phi0), | |
m = d3Geo.geoProjectionMutator(armadilloRaw), | |
p = m(phi0), | |
stream_ = p.stream; | |
p.parallel = function(_) { | |
if (!arguments.length) return phi0 * degrees; | |
tanPhi0 = tan((sPhi0 = (phi0 = _ * radians) >= 0 ? 1 : -1) * phi0); | |
return m(phi0); | |
}; | |
p.stream = function(stream) { | |
var rotate = p.rotate(), | |
rotateStream = stream_(stream), | |
sphereStream = (p.rotate([0, 0]), stream_(stream)); | |
p.rotate(rotate); | |
rotateStream.sphere = function() { | |
sphereStream.polygonStart(), sphereStream.lineStart(); | |
for (var lambda = sPhi0 * -180; sPhi0 * lambda < 180; lambda += sPhi0 * 90) sphereStream.point(lambda, sPhi0 * 90); | |
while (sPhi0 * (lambda -= phi0) >= -180) { // TODO precision? | |
sphereStream.point(lambda, sPhi0 * -atan2(cos(lambda * radians / 2), tanPhi0) * degrees); | |
} | |
sphereStream.lineEnd(), sphereStream.polygonEnd(); | |
}; | |
return rotateStream; | |
}; | |
return p | |
.scale(218.695) | |
.center([0, 28.0974]); | |
}; | |
function augustRaw(lambda, phi) { | |
var tanPhi = tan(phi / 2), | |
k = sqrt(1 - tanPhi * tanPhi), | |
c = 1 + k * cos(lambda /= 2), | |
x = sin(lambda) * k / c, | |
y = tanPhi / c, | |
x2 = x * x, | |
y2 = y * y; | |
return [ | |
4 / 3 * x * (3 + x2 - 3 * y2), | |
4 / 3 * y * (3 + 3 * x2 - y2) | |
]; | |
} | |
augustRaw.invert = function(x, y) { | |
x *= 3 / 8, y *= 3 / 8; | |
if (!x && abs(y) > 1) return null; | |
var x2 = x * x, | |
y2 = y * y, | |
s = 1 + x2 + y2, | |
sin3Eta = sqrt((s - sqrt(s * s - 4 * y * y)) / 2), | |
eta = asin(sin3Eta) / 3, | |
xi = sin3Eta ? arcosh(abs(y / sin3Eta)) / 3 : arsinh(abs(x)) / 3, | |
cosEta = cos(eta), | |
coshXi = cosh(xi), | |
d = coshXi * coshXi - cosEta * cosEta; | |
return [ | |
sign(x) * 2 * atan2(sinh(xi) * cosEta, 0.25 - d), | |
sign(y) * 2 * atan2(coshXi * sin(eta), 0.25 + d) | |
]; | |
}; | |
var august = function() { | |
return d3Geo.geoProjection(augustRaw) | |
.scale(66.1603); | |
}; | |
var sqrt8 = sqrt(8); | |
var phi0 = log(1 + sqrt2); | |
function bakerRaw(lambda, phi) { | |
var phi0 = abs(phi); | |
return phi0 < quarterPi | |
? [lambda, log(tan(quarterPi + phi / 2))] | |
: [lambda * cos(phi0) * (2 * sqrt2 - 1 / sin(phi0)), sign(phi) * (2 * sqrt2 * (phi0 - quarterPi) - log(tan(phi0 / 2)))]; | |
} | |
bakerRaw.invert = function(x, y) { | |
if ((y0 = abs(y)) < phi0) return [x, 2 * atan(exp(y)) - halfPi]; | |
var phi = quarterPi, i = 25, delta, y0; | |
do { | |
var cosPhi_2 = cos(phi / 2), tanPhi_2 = tan(phi / 2); | |
phi -= delta = (sqrt8 * (phi - quarterPi) - log(tanPhi_2) - y0) / (sqrt8 - cosPhi_2 * cosPhi_2 / (2 * tanPhi_2)); | |
} while (abs(delta) > epsilon2 && --i > 0); | |
return [x / (cos(phi) * (sqrt8 - 1 / sin(phi))), sign(y) * phi]; | |
}; | |
var baker = function() { | |
return d3Geo.geoProjection(bakerRaw) | |
.scale(112.314); | |
}; | |
function berghausRaw(lobes) { | |
var k = 2 * pi / lobes; | |
function forward(lambda, phi) { | |
var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi); | |
if (abs(lambda) > halfPi) { // back hemisphere | |
var theta = atan2(p[1], p[0]), | |
r = sqrt(p[0] * p[0] + p[1] * p[1]), | |
theta0 = k * round((theta - halfPi) / k) + halfPi, | |
α = atan2(sin(theta -= theta0), 2 - cos(theta)); // angle relative to lobe end | |
theta = theta0 + asin(pi / r * sin(α)) - α; | |
p[0] = r * cos(theta); | |
p[1] = r * sin(theta); | |
} | |
return p; | |
} | |
forward.invert = function(x, y) { | |
var r = sqrt(x * x + y * y); | |
if (r > halfPi) { | |
var theta = atan2(y, x), | |
theta0 = k * round((theta - halfPi) / k) + halfPi, | |
s = theta > theta0 ? -1 : 1, | |
A = r * cos(theta0 - theta), | |
cotα = 1 / tan(s * acos((A - pi) / sqrt(pi * (pi - 2 * A) + r * r))); | |
theta = theta0 + 2 * atan((cotα + s * sqrt(cotα * cotα - 3)) / 3); | |
x = r * cos(theta), y = r * sin(theta); | |
} | |
return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y); | |
}; | |
return forward; | |
} | |
var berghaus = function() { | |
var lobes = 5, | |
m = d3Geo.geoProjectionMutator(berghausRaw), | |
p = m(lobes), | |
projectionStream = p.stream, | |
epsilon$$1 = 1e-2, | |
cr = -cos(epsilon$$1 * radians), | |
sr = sin(epsilon$$1 * radians); | |
p.lobes = function(_) { | |
return arguments.length ? m(lobes = +_) : lobes; | |
}; | |
p.stream = function(stream) { | |
var rotate = p.rotate(), | |
rotateStream = projectionStream(stream), | |
sphereStream = (p.rotate([0, 0]), projectionStream(stream)); | |
p.rotate(rotate); | |
rotateStream.sphere = function() { | |
sphereStream.polygonStart(), sphereStream.lineStart(); | |
for (var i = 0, delta = 360 / lobes, delta0 = 2 * pi / lobes, phi = 90 - 180 / lobes, phi0 = halfPi; i < lobes; ++i, phi -= delta, phi0 -= delta0) { | |
sphereStream.point(atan2(sr * cos(phi0), cr) * degrees, asin(sr * sin(phi0)) * degrees); | |
if (phi < -90) { | |
sphereStream.point(-90, -180 - phi - epsilon$$1); | |
sphereStream.point(-90, -180 - phi + epsilon$$1); | |
} else { | |
sphereStream.point(90, phi + epsilon$$1); | |
sphereStream.point(90, phi - epsilon$$1); | |
} | |
} | |
sphereStream.lineEnd(), sphereStream.polygonEnd(); | |
}; | |
return rotateStream; | |
}; | |
return p | |
.scale(87.8076) | |
.center([0, 17.1875]) | |
.clipAngle(180 - 1e-3); | |
}; | |
function mollweideBromleyTheta(cp, phi) { | |
var cpsinPhi = cp * sin(phi), i = 30, delta; | |
do phi -= delta = (phi + sin(phi) - cpsinPhi) / (1 + cos(phi)); | |
while (abs(delta) > epsilon && --i > 0); | |
return phi / 2; | |
} | |
function mollweideBromleyRaw(cx, cy, cp) { | |
function forward(lambda, phi) { | |
return [cx * lambda * cos(phi = mollweideBromleyTheta(cp, phi)), cy * sin(phi)]; | |
} | |
forward.invert = function(x, y) { | |
return y = asin(y / cy), [x / (cx * cos(y)), asin((2 * y + sin(2 * y)) / cp)]; | |
}; | |
return forward; | |
} | |
var mollweideRaw = mollweideBromleyRaw(sqrt2 / halfPi, sqrt2, pi); | |
var mollweide = function() { | |
return d3Geo.geoProjection(mollweideRaw) | |
.scale(169.529); | |
}; | |
var k = 2.00276; | |
var w = 1.11072; | |
function boggsRaw(lambda, phi) { | |
var theta = mollweideBromleyTheta(pi, phi); | |
return [k * lambda / (1 / cos(phi) + w / cos(theta)), (phi + sqrt2 * sin(theta)) / k]; | |
} | |
boggsRaw.invert = function(x, y) { | |
var ky = k * y, theta = y < 0 ? -quarterPi : quarterPi, i = 25, delta, phi; | |
do { | |
phi = ky - sqrt2 * sin(theta); | |
theta -= delta = (sin(2 * theta) + 2 * theta - pi * sin(phi)) / (2 * cos(2 * theta) + 2 + pi * cos(phi) * sqrt2 * cos(theta)); | |
} while (abs(delta) > epsilon && --i > 0); | |
phi = ky - sqrt2 * sin(theta); | |
return [x * (1 / cos(phi) + w / cos(theta)) / k, phi]; | |
}; | |
var boggs = function() { | |
return d3Geo.geoProjection(boggsRaw) | |
.scale(160.857); | |
}; | |
var parallel1 = function(projectAt) { | |
var phi0 = 0, | |
m = d3Geo.geoProjectionMutator(projectAt), | |
p = m(phi0); | |
p.parallel = function(_) { | |
return arguments.length ? m(phi0 = _ * radians) : phi0 * degrees; | |
}; | |
return p; | |
}; | |
function sinusoidalRaw(lambda, phi) { | |
return [lambda * cos(phi), phi]; | |
} | |
sinusoidalRaw.invert = function(x, y) { | |
return [x / cos(y), y]; | |
}; | |
var sinusoidal = function() { | |
return d3Geo.geoProjection(sinusoidalRaw) | |
.scale(152.63); | |
}; | |
function bonneRaw(phi0) { | |
if (!phi0) return sinusoidalRaw; | |
var cotPhi0 = 1 / tan(phi0); | |
function forward(lambda, phi) { | |
var rho = cotPhi0 + phi0 - phi, | |
e = rho ? lambda * cos(phi) / rho : rho; | |
return [rho * sin(e), cotPhi0 - rho * cos(e)]; | |
} | |
forward.invert = function(x, y) { | |
var rho = sqrt(x * x + (y = cotPhi0 - y) * y), | |
phi = cotPhi0 + phi0 - rho; | |
return [rho / cos(phi) * atan2(x, y), phi]; | |
}; | |
return forward; | |
} | |
var bonne = function() { | |
return parallel1(bonneRaw) | |
.scale(123.082) | |
.center([0, 26.1441]) | |
.parallel(45); | |
}; | |
function bottomleyRaw(sinPsi) { | |
function forward(lambda, phi) { | |
var rho = halfPi - phi, | |
eta = rho ? lambda * sinPsi * sin(rho) / rho : rho; | |
return [rho * sin(eta) / sinPsi, halfPi - rho * cos(eta)]; | |
} | |
forward.invert = function(x, y) { | |
var x1 = x * sinPsi, | |
y1 = halfPi - y, | |
rho = sqrt(x1 * x1 + y1 * y1), | |
eta = atan2(x1, y1); | |
return [(rho ? rho / sin(rho) : 1) * eta / sinPsi, halfPi - rho]; | |
}; | |
return forward; | |
} | |
var bottomley = function() { | |
var sinPsi = 0.5, | |
m = d3Geo.geoProjectionMutator(bottomleyRaw), | |
p = m(sinPsi); | |
p.fraction = function(_) { | |
return arguments.length ? m(sinPsi = +_) : sinPsi; | |
}; | |
return p | |
.scale(158.837); | |
}; | |
var bromleyRaw = mollweideBromleyRaw(1, 4 / pi, pi); | |
var bromley = function() { | |
return d3Geo.geoProjection(bromleyRaw) | |
.scale(152.63); | |
}; | |
// Azimuthal distance. | |
function distance(dPhi, c1, s1, c2, s2, dLambda) { | |
var cosdLambda = cos(dLambda), r; | |
if (abs(dPhi) > 1 || abs(dLambda) > 1) { | |
r = acos(s1 * s2 + c1 * c2 * cosdLambda); | |
} else { | |
var sindPhi = sin(dPhi / 2), sindLambda = sin(dLambda / 2); | |
r = 2 * asin(sqrt(sindPhi * sindPhi + c1 * c2 * sindLambda * sindLambda)); | |
} | |
return abs(r) > epsilon ? [r, atan2(c2 * sin(dLambda), c1 * s2 - s1 * c2 * cosdLambda)] : [0, 0]; | |
} | |
// Angle opposite a, and contained between sides of lengths b and c. | |
function angle(b, c, a) { | |
return acos((b * b + c * c - a * a) / (2 * b * c)); | |
} | |
// Normalize longitude. | |
function longitude(lambda) { | |
return lambda - 2 * pi * floor((lambda + pi) / (2 * pi)); | |
} | |
function chamberlinRaw(p0, p1, p2) { | |
var points = [ | |
[p0[0], p0[1], sin(p0[1]), cos(p0[1])], | |
[p1[0], p1[1], sin(p1[1]), cos(p1[1])], | |
[p2[0], p2[1], sin(p2[1]), cos(p2[1])] | |
]; | |
for (var a = points[2], b, i = 0; i < 3; ++i, a = b) { | |
b = points[i]; | |
a.v = distance(b[1] - a[1], a[3], a[2], b[3], b[2], b[0] - a[0]); | |
a.point = [0, 0]; | |
} | |
var beta0 = angle(points[0].v[0], points[2].v[0], points[1].v[0]), | |
beta1 = angle(points[0].v[0], points[1].v[0], points[2].v[0]), | |
beta2 = pi - beta0; | |
points[2].point[1] = 0; | |
points[0].point[0] = -(points[1].point[0] = points[0].v[0] / 2); | |
var mean = [ | |
points[2].point[0] = points[0].point[0] + points[2].v[0] * cos(beta0), | |
2 * (points[0].point[1] = points[1].point[1] = points[2].v[0] * sin(beta0)) | |
]; | |
function forward(lambda, phi) { | |
var sinPhi = sin(phi), | |
cosPhi = cos(phi), | |
v = new Array(3), i; | |
// Compute distance and azimuth from control points. | |
for (i = 0; i < 3; ++i) { | |
var p = points[i]; | |
v[i] = distance(phi - p[1], p[3], p[2], cosPhi, sinPhi, lambda - p[0]); | |
if (!v[i][0]) return p.point; | |
v[i][1] = longitude(v[i][1] - p.v[1]); | |
} | |
// Arithmetic mean of interception points. | |
var point = mean.slice(); | |
for (i = 0; i < 3; ++i) { | |
var j = i == 2 ? 0 : i + 1; | |
var a = angle(points[i].v[0], v[i][0], v[j][0]); | |
if (v[i][1] < 0) a = -a; | |
if (!i) { | |
point[0] += v[i][0] * cos(a); | |
point[1] -= v[i][0] * sin(a); | |
} else if (i == 1) { | |
a = beta1 - a; | |
point[0] -= v[i][0] * cos(a); | |
point[1] -= v[i][0] * sin(a); | |
} else { | |
a = beta2 - a; | |
point[0] += v[i][0] * cos(a); | |
point[1] += v[i][0] * sin(a); | |
} | |
} | |
point[0] /= 3, point[1] /= 3; | |
return point; | |
} | |
return forward; | |
} | |
function pointRadians(p) { | |
return p[0] *= radians, p[1] *= radians, p; | |
} | |
function chamberlinAfrica() { | |
return chamberlin([0, 22], [45, 22], [22.5, -22]) | |
.scale(380) | |
.center([22.5, 2]); | |
} | |
function chamberlin(p0, p1, p2) { // TODO order matters! | |
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: [p0, p1, p2]}), | |
R = [-c[0], -c[1]], | |
r = d3Geo.geoRotation(R), | |
p = d3Geo.geoProjection(chamberlinRaw(pointRadians(r(p0)), pointRadians(r(p1)), pointRadians(r(p2)))).rotate(R), | |
center = p.center; | |
delete p.rotate; | |
p.center = function(_) { | |
return arguments.length ? center(r(_)) : r.invert(center()); | |
}; | |
return p | |
.clipAngle(90); | |
} | |
function collignonRaw(lambda, phi) { | |
var alpha = sqrt(1 - sin(phi)); | |
return [(2 / sqrtPi) * lambda * alpha, sqrtPi * (1 - alpha)]; | |
} | |
collignonRaw.invert = function(x, y) { | |
var lambda = (lambda = y / sqrtPi - 1) * lambda; | |
return [lambda > 0 ? x * sqrt(pi / lambda) / 2 : 0, asin(1 - lambda)]; | |
}; | |
var collignon = function() { | |
return d3Geo.geoProjection(collignonRaw) | |
.scale(95.6464) | |
.center([0, 30]); | |
}; | |
function craigRaw(phi0) { | |
var tanPhi0 = tan(phi0); | |
function forward(lambda, phi) { | |
return [lambda, (lambda ? lambda / sin(lambda) : 1) * (sin(phi) * cos(lambda) - tanPhi0 * cos(phi))]; | |
} | |
forward.invert = tanPhi0 ? function(x, y) { | |
if (x) y *= sin(x) / x; | |
var cosλ = cos(x); | |
return [x, 2 * atan2(sqrt(cosλ * cosλ + tanPhi0 * tanPhi0 - y * y) - cosλ, tanPhi0 - y)]; | |
} : function(x, y) { | |
return [x, asin(x ? y * tan(x) / x : y)]; | |
}; | |
return forward; | |
} | |
var craig = function() { | |
return parallel1(craigRaw) | |
.scale(249.828) | |
.clipAngle(90); | |
}; | |
var sqrt3 = sqrt(3); | |
function crasterRaw(lambda, phi) { | |
return [sqrt3 * lambda * (2 * cos(2 * phi / 3) - 1) / sqrtPi, sqrt3 * sqrtPi * sin(phi / 3)]; | |
} | |
crasterRaw.invert = function(x, y) { | |
var phi = 3 * asin(y / (sqrt3 * sqrtPi)); | |
return [sqrtPi * x / (sqrt3 * (2 * cos(2 * phi / 3) - 1)), phi]; | |
}; | |
var craster = function() { | |
return d3Geo.geoProjection(crasterRaw) | |
.scale(156.19); | |
}; | |
function cylindricalEqualAreaRaw(phi0) { | |
var cosPhi0 = cos(phi0); | |
function forward(lambda, phi) { | |
return [lambda * cosPhi0, sin(phi) / cosPhi0]; | |
} | |
forward.invert = function(x, y) { | |
return [x / cosPhi0, asin(y * cosPhi0)]; | |
}; | |
return forward; | |
} | |
var cylindricalEqualArea = function() { | |
return parallel1(cylindricalEqualAreaRaw) | |
.parallel(38.58) // acos(sqrt(width / height / pi)) * radians | |
.scale(195.044); // width / (sqrt(width / height / pi) * 2 * pi) | |
}; | |
function cylindricalStereographicRaw(phi0) { | |
var cosPhi0 = cos(phi0); | |
function forward(lambda, phi) { | |
return [lambda * cosPhi0, (1 + cosPhi0) * tan(phi / 2)]; | |
} | |
forward.invert = function(x, y) { | |
return [x / cosPhi0, atan(y / (1 + cosPhi0)) * 2]; | |
}; | |
return forward; | |
} | |
var cylindricalStereographic = function() { | |
return parallel1(cylindricalStereographicRaw) | |
.scale(124.75); | |
}; | |
function eckert1Raw(lambda, phi) { | |
var alpha = sqrt(8 / (3 * pi)); | |
return [ | |
alpha * lambda * (1 - abs(phi) / pi), | |
alpha * phi | |
]; | |
} | |
eckert1Raw.invert = function(x, y) { | |
var alpha = sqrt(8 / (3 * pi)), | |
phi = y / alpha; | |
return [ | |
x / (alpha * (1 - abs(phi) / pi)), | |
phi | |
]; | |
}; | |
var eckert1 = function() { | |
return d3Geo.geoProjection(eckert1Raw) | |
.scale(165.664); | |
}; | |
function eckert2Raw(lambda, phi) { | |
var alpha = sqrt(4 - 3 * sin(abs(phi))); | |
return [ | |
2 / sqrt(6 * pi) * lambda * alpha, | |
sign(phi) * sqrt(2 * pi / 3) * (2 - alpha) | |
]; | |
} | |
eckert2Raw.invert = function(x, y) { | |
var alpha = 2 - abs(y) / sqrt(2 * pi / 3); | |
return [ | |
x * sqrt(6 * pi) / (2 * alpha), | |
sign(y) * asin((4 - alpha * alpha) / 3) | |
]; | |
}; | |
var eckert2 = function() { | |
return d3Geo.geoProjection(eckert2Raw) | |
.scale(165.664); | |
}; | |
function eckert3Raw(lambda, phi) { | |
var k = sqrt(pi * (4 + pi)); | |
return [ | |
2 / k * lambda * (1 + sqrt(1 - 4 * phi * phi / (pi * pi))), | |
4 / k * phi | |
]; | |
} | |
eckert3Raw.invert = function(x, y) { | |
var k = sqrt(pi * (4 + pi)) / 2; | |
return [ | |
x * k / (1 + sqrt(1 - y * y * (4 + pi) / (4 * pi))), | |
y * k / 2 | |
]; | |
}; | |
var eckert3 = function() { | |
return d3Geo.geoProjection(eckert3Raw) | |
.scale(180.739); | |
}; | |
function eckert4Raw(lambda, phi) { | |
var k = (2 + halfPi) * sin(phi); | |
phi /= 2; | |
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; i++) { | |
var cosPhi = cos(phi); | |
phi -= delta = (phi + sin(phi) * (cosPhi + 2) - k) / (2 * cosPhi * (1 + cosPhi)); | |
} | |
return [ | |
2 / sqrt(pi * (4 + pi)) * lambda * (1 + cos(phi)), | |
2 * sqrt(pi / (4 + pi)) * sin(phi) | |
]; | |
} | |
eckert4Raw.invert = function(x, y) { | |
var A = y * sqrt((4 + pi) / pi) / 2, | |
k = asin(A), | |
c = cos(k); | |
return [ | |
x / (2 / sqrt(pi * (4 + pi)) * (1 + c)), | |
asin((k + A * (c + 2)) / (2 + halfPi)) | |
]; | |
}; | |
var eckert4 = function() { | |
return d3Geo.geoProjection(eckert4Raw) | |
.scale(180.739); | |
}; | |
function eckert5Raw(lambda, phi) { | |
return [ | |
lambda * (1 + cos(phi)) / sqrt(2 + pi), | |
2 * phi / sqrt(2 + pi) | |
]; | |
} | |
eckert5Raw.invert = function(x, y) { | |
var k = sqrt(2 + pi), | |
phi = y * k / 2; | |
return [ | |
k * x / (1 + cos(phi)), | |
phi | |
]; | |
}; | |
var eckert5 = function() { | |
return d3Geo.geoProjection(eckert5Raw) | |
.scale(173.044); | |
}; | |
function eckert6Raw(lambda, phi) { | |
var k = (1 + halfPi) * sin(phi); | |
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; i++) { | |
phi -= delta = (phi + sin(phi) - k) / (1 + cos(phi)); | |
} | |
k = sqrt(2 + pi); | |
return [ | |
lambda * (1 + cos(phi)) / k, | |
2 * phi / k | |
]; | |
} | |
eckert6Raw.invert = function(x, y) { | |
var j = 1 + halfPi, | |
k = sqrt(j / 2); | |
return [ | |
x * 2 * k / (1 + cos(y *= k)), | |
asin((y + sin(y)) / j) | |
]; | |
}; | |
var eckert6 = function() { | |
return d3Geo.geoProjection(eckert6Raw) | |
.scale(173.044); | |
}; | |
var eisenlohrK = 3 + 2 * sqrt2; | |
function eisenlohrRaw(lambda, phi) { | |
var s0 = sin(lambda /= 2), | |
c0 = cos(lambda), | |
k = sqrt(cos(phi)), | |
c1 = cos(phi /= 2), | |
t = sin(phi) / (c1 + sqrt2 * c0 * k), | |
c = sqrt(2 / (1 + t * t)), | |
v = sqrt((sqrt2 * c1 + (c0 + s0) * k) / (sqrt2 * c1 + (c0 - s0) * k)); | |
return [ | |
eisenlohrK * (c * (v - 1 / v) - 2 * log(v)), | |
eisenlohrK * (c * t * (v + 1 / v) - 2 * atan(t)) | |
]; | |
} | |
eisenlohrRaw.invert = function(x, y) { | |
if (!(p = augustRaw.invert(x / 1.2, y * 1.065))) return null; | |
var lambda = p[0], phi = p[1], i = 20, p; | |
x /= eisenlohrK, y /= eisenlohrK; | |
do { | |
var _0 = lambda / 2, | |
_1 = phi / 2, | |
s0 = sin(_0), | |
c0 = cos(_0), | |
s1 = sin(_1), | |
c1 = cos(_1), | |
cos1 = cos(phi), | |
k = sqrt(cos1), | |
t = s1 / (c1 + sqrt2 * c0 * k), | |
t2 = t * t, | |
c = sqrt(2 / (1 + t2)), | |
v0 = (sqrt2 * c1 + (c0 + s0) * k), | |
v1 = (sqrt2 * c1 + (c0 - s0) * k), | |
v2 = v0 / v1, | |
v = sqrt(v2), | |
vm1v = v - 1 / v, | |
vp1v = v + 1 / v, | |
fx = c * vm1v - 2 * log(v) - x, | |
fy = c * t * vp1v - 2 * atan(t) - y, | |
deltatDeltaLambda = s1 && sqrt1_2 * k * s0 * t2 / s1, | |
deltatDeltaPhi = (sqrt2 * c0 * c1 + k) / (2 * (c1 + sqrt2 * c0 * k) * (c1 + sqrt2 * c0 * k) * k), | |
deltacDeltat = -0.5 * t * c * c * c, | |
deltacDeltaLambda = deltacDeltat * deltatDeltaLambda, | |
deltacDeltaPhi = deltacDeltat * deltatDeltaPhi, | |
A = (A = 2 * c1 + sqrt2 * k * (c0 - s0)) * A * v, | |
deltavDeltaLambda = (sqrt2 * c0 * c1 * k + cos1) / A, | |
deltavDeltaPhi = -(sqrt2 * s0 * s1) / (k * A), | |
deltaxDeltaLambda = vm1v * deltacDeltaLambda - 2 * deltavDeltaLambda / v + c * (deltavDeltaLambda + deltavDeltaLambda / v2), | |
deltaxDeltaPhi = vm1v * deltacDeltaPhi - 2 * deltavDeltaPhi / v + c * (deltavDeltaPhi + deltavDeltaPhi / v2), | |
deltayDeltaLambda = t * vp1v * deltacDeltaLambda - 2 * deltatDeltaLambda / (1 + t2) + c * vp1v * deltatDeltaLambda + c * t * (deltavDeltaLambda - deltavDeltaLambda / v2), | |
deltayDeltaPhi = t * vp1v * deltacDeltaPhi - 2 * deltatDeltaPhi / (1 + t2) + c * vp1v * deltatDeltaPhi + c * t * (deltavDeltaPhi - deltavDeltaPhi / v2), | |
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda; | |
if (!denominator) break; | |
var deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator, | |
deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator; | |
lambda -= deltaLambda; | |
phi = max(-halfPi, min(halfPi, phi - deltaPhi)); | |
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0); | |
return abs(abs(phi) - halfPi) < epsilon ? [0, phi] : i && [lambda, phi]; | |
}; | |
var eisenlohr = function() { | |
return d3Geo.geoProjection(eisenlohrRaw) | |
.scale(62.5271); | |
}; | |
var faheyK = cos(35 * radians); | |
function faheyRaw(lambda, phi) { | |
var t = tan(phi / 2); | |
return [lambda * faheyK * sqrt(1 - t * t), (1 + faheyK) * t]; | |
} | |
faheyRaw.invert = function(x, y) { | |
var t = y / (1 + faheyK); | |
return [x && x / (faheyK * sqrt(1 - t * t)), 2 * atan(t)]; | |
}; | |
var fahey = function() { | |
return d3Geo.geoProjection(faheyRaw) | |
.scale(137.152); | |
}; | |
function foucautRaw(lambda, phi) { | |
var k = phi / 2, cosk = cos(k); | |
return [ 2 * lambda / sqrtPi * cos(phi) * cosk * cosk, sqrtPi * tan(k)]; | |
} | |
foucautRaw.invert = function(x, y) { | |
var k = atan(y / sqrtPi), cosk = cos(k), phi = 2 * k; | |
return [x * sqrtPi / 2 / (cos(phi) * cosk * cosk), phi]; | |
}; | |
var foucaut = function() { | |
return d3Geo.geoProjection(foucautRaw) | |
.scale(135.264); | |
}; | |
function gilbertForward(point) { | |
return [point[0] / 2, asin(tan(point[1] / 2 * radians)) * degrees]; | |
} | |
function gilbertInvert(point) { | |
return [point[0] * 2, 2 * atan(sin(point[1] * radians)) * degrees]; | |
} | |
var gilbert = function(projectionType) { | |
if (projectionType == null) projectionType = d3Geo.geoOrthographic; | |
var projection = projectionType(), | |
equirectangular = d3Geo.geoEquirectangular().scale(degrees).precision(0).clipAngle(null).translate([0, 0]); // antimeridian cutting | |
function gilbert(point) { | |
return projection(gilbertForward(point)); | |
} | |
if (projection.invert) gilbert.invert = function(point) { | |
return gilbertInvert(projection.invert(point)); | |
}; | |
gilbert.stream = function(stream) { | |
var s1 = projection.stream(stream), s0 = equirectangular.stream({ | |
point: function(lambda, phi) { s1.point(lambda / 2, asin(tan(-phi / 2 * radians)) * degrees); }, | |
lineStart: function() { s1.lineStart(); }, | |
lineEnd: function() { s1.lineEnd(); }, | |
polygonStart: function() { s1.polygonStart(); }, | |
polygonEnd: function() { s1.polygonEnd(); } | |
}); | |
s0.sphere = s1.sphere; | |
return s0; | |
}; | |
function property(name) { | |
gilbert[name] = function(_) { | |
return arguments.length ? (projection[name](_), gilbert) : projection[name](); | |
}; | |
} | |
gilbert.rotate = function(_) { | |
return arguments.length ? (equirectangular.rotate(_), gilbert) : equirectangular.rotate(); | |
}; | |
gilbert.center = function(_) { | |
return arguments.length ? (projection.center(gilbertForward(_)), gilbert) : gilbertInvert(projection.center()); | |
}; | |
property("clipAngle"); | |
property("clipExtent"); | |
property("scale"); | |
property("translate"); | |
property("precision"); | |
return gilbert | |
.scale(249.5); | |
}; | |
function gingeryRaw(rho, n) { | |
var k = 2 * pi / n, | |
rho2 = rho * rho; | |
function forward(lambda, phi) { | |
var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi), | |
x = p[0], | |
y = p[1], | |
r2 = x * x + y * y; | |
if (r2 > rho2) { | |
var r = sqrt(r2), | |
theta = atan2(y, x), | |
theta0 = k * round(theta / k), | |
alpha = theta - theta0, | |
rhoCosAlpha = rho * cos(alpha), | |
k_ = (rho * sin(alpha) - alpha * sin(rhoCosAlpha)) / (halfPi - rhoCosAlpha), | |
s_ = gingeryLength(alpha, k_), | |
e = (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi); | |
x = r; | |
var i = 50, delta; | |
do { | |
x -= delta = (rho + gingeryIntegrate(s_, rhoCosAlpha, x) * e - r) / (s_(x) * e); | |
} while (abs(delta) > epsilon && --i > 0); | |
y = alpha * sin(x); | |
if (x < halfPi) y -= k_ * (x - halfPi); | |
var s = sin(theta0), | |
c = cos(theta0); | |
p[0] = x * c - y * s; | |
p[1] = x * s + y * c; | |
} | |
return p; | |
} | |
forward.invert = function(x, y) { | |
var r2 = x * x + y * y; | |
if (r2 > rho2) { | |
var r = sqrt(r2), | |
theta = atan2(y, x), | |
theta0 = k * round(theta / k), | |
dTheta = theta - theta0; | |
x = r * cos(dTheta); | |
y = r * sin(dTheta); | |
var x_halfPi = x - halfPi, | |
sinx = sin(x), | |
alpha = y / sinx, | |
delta = x < halfPi ? Infinity : 0, | |
i = 10; | |
while (true) { | |
var rhosinAlpha = rho * sin(alpha), | |
rhoCosAlpha = rho * cos(alpha), | |
sinRhoCosAlpha = sin(rhoCosAlpha), | |
halfPi_RhoCosAlpha = halfPi - rhoCosAlpha, | |
k_ = (rhosinAlpha - alpha * sinRhoCosAlpha) / halfPi_RhoCosAlpha, | |
s_ = gingeryLength(alpha, k_); | |
if (abs(delta) < epsilon2 || !--i) break; | |
alpha -= delta = (alpha * sinx - k_ * x_halfPi - y) / ( | |
sinx - x_halfPi * 2 * ( | |
halfPi_RhoCosAlpha * (rhoCosAlpha + alpha * rhosinAlpha * cos(rhoCosAlpha) - sinRhoCosAlpha) - | |
rhosinAlpha * (rhosinAlpha - alpha * sinRhoCosAlpha) | |
) / (halfPi_RhoCosAlpha * halfPi_RhoCosAlpha)); | |
} | |
r = rho + gingeryIntegrate(s_, rhoCosAlpha, x) * (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi); | |
theta = theta0 + alpha; | |
x = r * cos(theta); | |
y = r * sin(theta); | |
} | |
return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y); | |
}; | |
return forward; | |
} | |
function gingeryLength(alpha, k) { | |
return function(x) { | |
var y_ = alpha * cos(x); | |
if (x < halfPi) y_ -= k; | |
return sqrt(1 + y_ * y_); | |
}; | |
} | |
// Numerical integration: trapezoidal rule. | |
function gingeryIntegrate(f, a, b) { | |
var n = 50, | |
h = (b - a) / n, | |
s = f(a) + f(b); | |
for (var i = 1, x = a; i < n; ++i) s += 2 * f(x += h); | |
return s * 0.5 * h; | |
} | |
var gingery = function() { | |
var n = 6, | |
rho = 30 * radians, | |
cRho = cos(rho), | |
sRho = sin(rho), | |
m = d3Geo.geoProjectionMutator(gingeryRaw), | |
p = m(rho, n), | |
stream_ = p.stream, | |
epsilon$$1 = 1e-2, | |
cr = -cos(epsilon$$1 * radians), | |
sr = sin(epsilon$$1 * radians); | |
p.radius = function(_) { | |
if (!arguments.length) return rho * degrees; | |
cRho = cos(rho = _ * radians); | |
sRho = sin(rho); | |
return m(rho, n); | |
}; | |
p.lobes = function(_) { | |
if (!arguments.length) return n; | |
return m(rho, n = +_); | |
}; | |
p.stream = function(stream) { | |
var rotate = p.rotate(), | |
rotateStream = stream_(stream), | |
sphereStream = (p.rotate([0, 0]), stream_(stream)); | |
p.rotate(rotate); | |
rotateStream.sphere = function() { | |
sphereStream.polygonStart(), sphereStream.lineStart(); | |
for (var i = 0, delta = 2 * pi / n, phi = 0; i < n; ++i, phi -= delta) { | |
sphereStream.point(atan2(sr * cos(phi), cr) * degrees, asin(sr * sin(phi)) * degrees); | |
sphereStream.point(atan2(sRho * cos(phi - delta / 2), cRho) * degrees, asin(sRho * sin(phi - delta / 2)) * degrees); | |
} | |
sphereStream.lineEnd(), sphereStream.polygonEnd(); | |
}; | |
return rotateStream; | |
}; | |
return p | |
.rotate([90, -40]) | |
.scale(91.7095) | |
.clipAngle(180 - 1e-3); | |
}; | |
var ginzburgPolyconicRaw = function(a, b, c, d, e, f, g, h) { | |
if (arguments.length < 8) h = 0; | |
function forward(lambda, phi) { | |
if (!phi) return [a * lambda / pi, 0]; | |
var phi2 = phi * phi, | |
xB = a + phi2 * (b + phi2 * (c + phi2 * d)), | |
yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)), | |
m = (xB * xB + yB * yB) / (2 * yB), | |
alpha = lambda * asin(xB / m) / pi; | |
return [m * sin(alpha), phi * (1 + phi2 * h) + m * (1 - cos(alpha))]; | |
} | |
forward.invert = function(x, y) { | |
var lambda = pi * x / a, | |
phi = y, | |
deltaLambda, deltaPhi, i = 50; | |
do { | |
var phi2 = phi * phi, | |
xB = a + phi2 * (b + phi2 * (c + phi2 * d)), | |
yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)), | |
p = xB * xB + yB * yB, | |
q = 2 * yB, | |
m = p / q, | |
m2 = m * m, | |
dAlphadLambda = asin(xB / m) / pi, | |
alpha = lambda * dAlphadLambda, | |
xB2 = xB * xB, | |
dxBdPhi = (2 * b + phi2 * (4 * c + phi2 * 6 * d)) * phi, | |
dyBdPhi = e + phi2 * (3 * f + phi2 * 5 * g), | |
dpdPhi = 2 * (xB * dxBdPhi + yB * (dyBdPhi - 1)), | |
dqdPhi = 2 * (dyBdPhi - 1), | |
dmdPhi = (dpdPhi * q - p * dqdPhi) / (q * q), | |
cosAlpha = cos(alpha), | |
sinAlpha = sin(alpha), | |
mcosAlpha = m * cosAlpha, | |
msinAlpha = m * sinAlpha, | |
dAlphadPhi = ((lambda / pi) * (1 / sqrt(1 - xB2 / m2)) * (dxBdPhi * m - xB * dmdPhi)) / m2, | |
fx = msinAlpha - x, | |
fy = phi * (1 + phi2 * h) + m - mcosAlpha - y, | |
deltaxDeltaPhi = dmdPhi * sinAlpha + mcosAlpha * dAlphadPhi, | |
deltaxDeltaLambda = mcosAlpha * dAlphadLambda, | |
deltayDeltaPhi = 1 + dmdPhi - (dmdPhi * cosAlpha - msinAlpha * dAlphadPhi), | |
deltayDeltaLambda = msinAlpha * dAlphadLambda, | |
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda; | |
if (!denominator) break; | |
lambda -= deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator; | |
phi -= deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator; | |
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0); | |
return [lambda, phi]; | |
}; | |
return forward; | |
}; | |
var ginzburg4Raw = ginzburgPolyconicRaw(2.8284, -1.6988, 0.75432, -0.18071, 1.76003, -0.38914, 0.042555); | |
var ginzburg4 = function() { | |
return d3Geo.geoProjection(ginzburg4Raw) | |
.scale(149.995); | |
}; | |
var ginzburg5Raw = ginzburgPolyconicRaw(2.583819, -0.835827, 0.170354, -0.038094, 1.543313, -0.411435,0.082742); | |
var ginzburg5 = function() { | |
return d3Geo.geoProjection(ginzburg5Raw) | |
.scale(153.93); | |
}; | |
var ginzburg6Raw = ginzburgPolyconicRaw(5 / 6 * pi, -0.62636, -0.0344, 0, 1.3493, -0.05524, 0, 0.045); | |
var ginzburg6 = function() { | |
return d3Geo.geoProjection(ginzburg6Raw) | |
.scale(130.945); | |
}; | |
function ginzburg8Raw(lambda, phi) { | |
var lambda2 = lambda * lambda, | |
phi2 = phi * phi; | |
return [ | |
lambda * (1 - 0.162388 * phi2) * (0.87 - 0.000952426 * lambda2 * lambda2), | |
phi * (1 + phi2 / 12) | |
]; | |
} | |
ginzburg8Raw.invert = function(x, y) { | |
var lambda = x, | |
phi = y, | |
i = 50, delta; | |
do { | |
var phi2 = phi * phi; | |
phi -= delta = (phi * (1 + phi2 / 12) - y) / (1 + phi2 / 4); | |
} while (abs(delta) > epsilon && --i > 0); | |
i = 50; | |
x /= 1 -0.162388 * phi2; | |
do { | |
var lambda4 = (lambda4 = lambda * lambda) * lambda4; | |
lambda -= delta = (lambda * (0.87 - 0.000952426 * lambda4) - x) / (0.87 - 0.00476213 * lambda4); | |
} while (abs(delta) > epsilon && --i > 0); | |
return [lambda, phi]; | |
}; | |
var ginzburg8 = function() { | |
return d3Geo.geoProjection(ginzburg8Raw) | |
.scale(131.747); | |
}; | |
var ginzburg9Raw = ginzburgPolyconicRaw(2.6516, -0.76534, 0.19123, -0.047094, 1.36289, -0.13965,0.031762); | |
var ginzburg9 = function() { | |
return d3Geo.geoProjection(ginzburg9Raw) | |
.scale(131.087); | |
}; | |
var squareRaw = function(project) { | |
var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0]; | |
function projectSquare(lambda, phi) { | |
var s = lambda > 0 ? -0.5 : 0.5, | |
point = project(lambda + s * pi, phi); | |
point[0] -= s * dx; | |
return point; | |
} | |
if (project.invert) projectSquare.invert = function(x, y) { | |
var s = x > 0 ? -0.5 : 0.5, | |
location = project.invert(x + s * dx, y), | |
lambda = location[0] - s * pi; | |
if (lambda < -pi) lambda += 2 * pi; | |
else if (lambda > pi) lambda -= 2 * pi; | |
location[0] = lambda; | |
return location; | |
}; | |
return projectSquare; | |
}; | |
function gringortenRaw(lambda, phi) { | |
var sLambda = sign(lambda), | |
sPhi = sign(phi), | |
cosPhi = cos(phi), | |
x = cos(lambda) * cosPhi, | |
y = sin(lambda) * cosPhi, | |
z = sin(sPhi * phi); | |
lambda = abs(atan2(y, z)); | |
phi = asin(x); | |
if (abs(lambda - halfPi) > epsilon) lambda %= halfPi; | |
var point = gringortenHexadecant(lambda > pi / 4 ? halfPi - lambda : lambda, phi); | |
if (lambda > pi / 4) z = point[0], point[0] = -point[1], point[1] = -z; | |
return (point[0] *= sLambda, point[1] *= -sPhi, point); | |
} | |
gringortenRaw.invert = function(x, y) { | |
var sx = sign(x), | |
sy = sign(y), | |
x0 = -sx * x, | |
y0 = -sy * y, | |
t = y0 / x0 < 1, | |
p = gringortenHexadecantInvert(t ? y0 : x0, t ? x0 : y0), | |
lambda = p[0], | |
phi = p[1], | |
cosPhi = cos(phi); | |
if (t) lambda = -halfPi - lambda; | |
return [sx * (atan2(sin(lambda) * cosPhi, -sin(phi)) + pi), sy * asin(cos(lambda) * cosPhi)]; | |
}; | |
function gringortenHexadecant(lambda, phi) { | |
if (phi === halfPi) return [0, 0]; | |
var sinPhi = sin(phi), | |
r = sinPhi * sinPhi, | |
r2 = r * r, | |
j = 1 + r2, | |
k = 1 + 3 * r2, | |
q = 1 - r2, | |
z = asin(1 / sqrt(j)), | |
v = q + r * j * z, | |
p2 = (1 - sinPhi) / v, | |
p = sqrt(p2), | |
a2 = p2 * j, | |
a = sqrt(a2), | |
h = p * q, | |
x, | |
i; | |
if (lambda === 0) return [0, -(h + r * a)]; | |
var cosPhi = cos(phi), | |
secPhi = 1 / cosPhi, | |
drdPhi = 2 * sinPhi * cosPhi, | |
dvdPhi = (-3 * r + z * k) * drdPhi, | |
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v), | |
dpdPhi = (0.5 * dp2dPhi) / p, | |
dhdPhi = q * dpdPhi - 2 * r * p * drdPhi, | |
dra2dPhi = r * j * dp2dPhi + p2 * k * drdPhi, | |
mu = -secPhi * drdPhi, | |
nu = -secPhi * dra2dPhi, | |
zeta = -2 * secPhi * dhdPhi, | |
lambda1 = 4 * lambda / pi, | |
delta; | |
// Slower but accurate bisection method. | |
if (lambda > 0.222 * pi || phi < pi / 4 && lambda > 0.175 * pi) { | |
x = (h + r * sqrt(a2 * (1 + r2) - h * h)) / (1 + r2); | |
if (lambda > pi / 4) return [x, x]; | |
var x1 = x, x0 = 0.5 * x; | |
x = 0.5 * (x0 + x1), i = 50; | |
do { | |
var g = sqrt(a2 - x * x), | |
f = (x * (zeta + mu * g) + nu * asin(x / a)) - lambda1; | |
if (!f) break; | |
if (f < 0) x0 = x; | |
else x1 = x; | |
x = 0.5 * (x0 + x1); | |
} while (abs(x1 - x0) > epsilon && --i > 0); | |
} | |
// Newton-Raphson. | |
else { | |
x = epsilon, i = 25; | |
do { | |
var x2 = x * x, | |
g2 = sqrt(a2 - x2), | |
zetaMug = zeta + mu * g2, | |
f2 = x * zetaMug + nu * asin(x / a) - lambda1, | |
df = zetaMug + (nu - mu * x2) / g2; | |
x -= delta = g2 ? f2 / df : 0; | |
} while (abs(delta) > epsilon && --i > 0); | |
} | |
return [x, -h - r * sqrt(a2 - x * x)]; | |
} | |
function gringortenHexadecantInvert(x, y) { | |
var x0 = 0, | |
x1 = 1, | |
r = 0.5, | |
i = 50; | |
while (true) { | |
var r2 = r * r, | |
sinPhi = sqrt(r), | |
z = asin(1 / sqrt(1 + r2)), | |
v = (1 - r2) + r * (1 + r2) * z, | |
p2 = (1 - sinPhi) / v, | |
p = sqrt(p2), | |
a2 = p2 * (1 + r2), | |
h = p * (1 - r2), | |
g2 = a2 - x * x, | |
g = sqrt(g2), | |
y0 = y + h + r * g; | |
if (abs(x1 - x0) < epsilon2 || --i === 0 || y0 === 0) break; | |
if (y0 > 0) x0 = r; | |
else x1 = r; | |
r = 0.5 * (x0 + x1); | |
} | |
if (!i) return null; | |
var phi = asin(sinPhi), | |
cosPhi = cos(phi), | |
secPhi = 1 / cosPhi, | |
drdPhi = 2 * sinPhi * cosPhi, | |
dvdPhi = (-3 * r + z * (1 + 3 * r2)) * drdPhi, | |
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v), | |
dpdPhi = 0.5 * dp2dPhi / p, | |
dhdPhi = (1 - r2) * dpdPhi - 2 * r * p * drdPhi, | |
zeta = -2 * secPhi * dhdPhi, | |
mu = -secPhi * drdPhi, | |
nu = -secPhi * (r * (1 + r2) * dp2dPhi + p2 * (1 + 3 * r2) * drdPhi); | |
return [pi / 4 * (x * (zeta + mu * g) + nu * asin(x / sqrt(a2))), phi]; | |
} | |
var gringorten = function() { | |
return d3Geo.geoProjection(squareRaw(gringortenRaw)) | |
.scale(239.75); | |
}; | |
// Returns [sn, cn, dn](u + iv|m). | |
function ellipticJi(u, v, m) { | |
var a, b, c; | |
if (!u) { | |
b = ellipticJ(v, 1 - m); | |
return [ | |
[0, b[0] / b[1]], | |
[1 / b[1], 0], | |
[b[2] / b[1], 0] | |
]; | |
} | |
a = ellipticJ(u, m); | |
if (!v) return [[a[0], 0], [a[1], 0], [a[2], 0]]; | |
b = ellipticJ(v, 1 - m); | |
c = b[1] * b[1] + m * a[0] * a[0] * b[0] * b[0]; | |
return [ | |
[a[0] * b[2] / c, a[1] * a[2] * b[0] * b[1] / c], | |
[a[1] * b[1] / c, -a[0] * a[2] * b[0] * b[2] / c], | |
[a[2] * b[1] * b[2] / c, -m * a[0] * a[1] * b[0] / c] | |
]; | |
} | |
// Returns [sn, cn, dn, ph](u|m). | |
function ellipticJ(u, m) { | |
var ai, b, phi, t, twon; | |
if (m < epsilon) { | |
t = sin(u); | |
b = cos(u); | |
ai = m * (u - t * b) / 4; | |
return [ | |
t - ai * b, | |
b + ai * t, | |
1 - m * t * t / 2, | |
u - ai | |
]; | |
} | |
if (m >= 1 - epsilon) { | |
ai = (1 - m) / 4; | |
b = cosh(u); | |
t = tanh(u); | |
phi = 1 / b; | |
twon = b * sinh(u); | |
return [ | |
t + ai * (twon - u) / (b * b), | |
phi - ai * t * phi * (twon - u), | |
phi + ai * t * phi * (twon + u), | |
2 * atan(exp(u)) - halfPi + ai * (twon - u) / b | |
]; | |
} | |
var a = [1, 0, 0, 0, 0, 0, 0, 0, 0], | |
c = [sqrt(m), 0, 0, 0, 0, 0, 0, 0, 0], | |
i = 0; | |
b = sqrt(1 - m); | |
twon = 1; | |
while (abs(c[i] / a[i]) > epsilon && i < 8) { | |
ai = a[i++]; | |
c[i] = (ai - b) / 2; | |
a[i] = (ai + b) / 2; | |
b = sqrt(ai * b); | |
twon *= 2; | |
} | |
phi = twon * a[i] * u; | |
do { | |
t = c[i] * sin(b = phi) / a[i]; | |
phi = (asin(t) + phi) / 2; | |
} while (--i); | |
return [sin(phi), t = cos(phi), t / cos(phi - b), phi]; | |
} | |
// Calculate F(phi+iPsi|m). | |
// See Abramowitz and Stegun, 17.4.11. | |
function ellipticFi(phi, psi, m) { | |
var r = abs(phi), | |
i = abs(psi), | |
sinhPsi = sinh(i); | |
if (r) { | |
var cscPhi = 1 / sin(r), | |
cotPhi2 = 1 / (tan(r) * tan(r)), | |
b = -(cotPhi2 + m * (sinhPsi * sinhPsi * cscPhi * cscPhi) - 1 + m), | |
c = (m - 1) * cotPhi2, | |
cotLambda2 = (-b + sqrt(b * b - 4 * c)) / 2; | |
return [ | |
ellipticF(atan(1 / sqrt(cotLambda2)), m) * sign(phi), | |
ellipticF(atan(sqrt((cotLambda2 / cotPhi2 - 1) / m)), 1 - m) * sign(psi) | |
]; | |
} | |
return [ | |
0, | |
ellipticF(atan(sinhPsi), 1 - m) * sign(psi) | |
]; | |
} | |
// Calculate F(phi|m) where m = k² = sin²α. | |
// See Abramowitz and Stegun, 17.6.7. | |
function ellipticF(phi, m) { | |
if (!m) return phi; | |
if (m === 1) return log(tan(phi / 2 + quarterPi)); | |
var a = 1, | |
b = sqrt(1 - m), | |
c = sqrt(m); | |
for (var i = 0; abs(c) > epsilon; i++) { | |
if (phi % pi) { | |
var dPhi = atan(b * tan(phi) / a); | |
if (dPhi < 0) dPhi += pi; | |
phi += dPhi + ~~(phi / pi) * pi; | |
} else phi += phi; | |
c = (a + b) / 2; | |
b = sqrt(a * b); | |
c = ((a = c) - b) / 2; | |
} | |
return phi / (pow(2, i) * a); | |
} | |
function guyouRaw(lambda, phi) { | |
var k_ = (sqrt2 - 1) / (sqrt2 + 1), | |
k = sqrt(1 - k_ * k_), | |
K = ellipticF(halfPi, k * k), | |
f = -1, | |
psi = log(tan(pi / 4 + abs(phi) / 2)), | |
r = exp(f * psi) / sqrt(k_), | |
at = guyouComplexAtan(r * cos(f * lambda), r * sin(f * lambda)), | |
t = ellipticFi(at[0], at[1], k * k); | |
return [-t[1], (phi >= 0 ? 1 : -1) * (0.5 * K - t[0])]; | |
} | |
function guyouComplexAtan(x, y) { | |
var x2 = x * x, | |
y_1 = y + 1, | |
t = 1 - x2 - y * y; | |
return [ | |
0.5 * ((x >= 0 ? halfPi : -halfPi) - atan2(t, 2 * x)), | |
-0.25 * log(t * t + 4 * x2) +0.5 * log(y_1 * y_1 + x2) | |
]; | |
} | |
function guyouComplexDivide(a, b) { | |
var denominator = b[0] * b[0] + b[1] * b[1]; | |
return [ | |
(a[0] * b[0] + a[1] * b[1]) / denominator, | |
(a[1] * b[0] - a[0] * b[1]) / denominator | |
]; | |
} | |
guyouRaw.invert = function(x, y) { | |
var k_ = (sqrt2 - 1) / (sqrt2 + 1), | |
k = sqrt(1 - k_ * k_), | |
K = ellipticF(halfPi, k * k), | |
f = -1, | |
j = ellipticJi(0.5 * K - y, -x, k * k), | |
tn = guyouComplexDivide(j[0], j[1]), | |
lambda = atan2(tn[1], tn[0]) / f; | |
return [ | |
lambda, | |
2 * atan(exp(0.5 / f * log(k_ * tn[0] * tn[0] + k_ * tn[1] * tn[1]))) - halfPi | |
]; | |
}; | |
var guyou = function() { | |
return d3Geo.geoProjection(squareRaw(guyouRaw)) | |
.scale(151.496); | |
}; | |
function hammerRaw(A, B) { | |
if (arguments.length < 2) B = A; | |
if (B === 1) return d3Geo.geoAzimuthalEqualAreaRaw; | |
if (B === Infinity) return hammerQuarticAuthalicRaw; | |
function forward(lambda, phi) { | |
var coordinates = d3Geo.geoAzimuthalEqualAreaRaw(lambda / B, phi); | |
coordinates[0] *= A; | |
return coordinates; | |
} | |
forward.invert = function(x, y) { | |
var coordinates = d3Geo.geoAzimuthalEqualAreaRaw.invert(x / A, y); | |
coordinates[0] *= B; | |
return coordinates; | |
}; | |
return forward; | |
} | |
function hammerQuarticAuthalicRaw(lambda, phi) { | |
return [ | |
lambda * cos(phi) / cos(phi /= 2), | |
2 * sin(phi) | |
]; | |
} | |
hammerQuarticAuthalicRaw.invert = function(x, y) { | |
var phi = 2 * asin(y / 2); | |
return [ | |
x * cos(phi / 2) / cos(phi), | |
phi | |
]; | |
}; | |
var hammer = function() { | |
var B = 2, | |
m = d3Geo.geoProjectionMutator(hammerRaw), | |
p = m(B); | |
p.coefficient = function(_) { | |
if (!arguments.length) return B; | |
return m(B = +_); | |
}; | |
return p | |
.scale(169.529); | |
}; | |
function hammerRetroazimuthalRaw(phi0) { | |
var sinPhi0 = sin(phi0), | |
cosPhi0 = cos(phi0), | |
rotate = hammerRetroazimuthalRotation(phi0); | |
rotate.invert = hammerRetroazimuthalRotation(-phi0); | |
function forward(lambda, phi) { | |
var p = rotate(lambda, phi); | |
lambda = p[0], phi = p[1]; | |
var sinPhi = sin(phi), | |
cosPhi = cos(phi), | |
cosLambda = cos(lambda), | |
z = acos(sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosLambda), | |
sinz = sin(z), | |
K = abs(sinz) > epsilon ? z / sinz : 1; | |
return [ | |
K * cosPhi0 * sin(lambda), | |
(abs(lambda) > halfPi ? K : -K) // rotate for back hemisphere | |
* (sinPhi0 * cosPhi - cosPhi0 * sinPhi * cosLambda) | |
]; | |
} | |
forward.invert = function(x, y) { | |
var rho = sqrt(x * x + y * y), | |
sinz = -sin(rho), | |
cosz = cos(rho), | |
a = rho * cosz, | |
b = -y * sinz, | |
c = rho * sinPhi0, | |
d = sqrt(a * a + b * b - c * c), | |
phi = atan2(a * c + b * d, b * c - a * d), | |
lambda = (rho > halfPi ? -1 : 1) * atan2(x * sinz, rho * cos(phi) * cosz + y * sin(phi) * sinz); | |
return rotate.invert(lambda, phi); | |
}; | |
return forward; | |
} | |
// Latitudinal rotation by phi0. | |
// Temporary hack until D3 supports arbitrary small-circle clipping origins. | |
function hammerRetroazimuthalRotation(phi0) { | |
var sinPhi0 = sin(phi0), | |
cosPhi0 = cos(phi0); | |
return function(lambda, phi) { | |
var cosPhi = cos(phi), | |
x = cos(lambda) * cosPhi, | |
y = sin(lambda) * cosPhi, | |
z = sin(phi); | |
return [ | |
atan2(y, x * cosPhi0 - z * sinPhi0), | |
asin(z * cosPhi0 + x * sinPhi0) | |
]; | |
}; | |
} | |
var hammerRetroazimuthal = function() { | |
var phi0 = 0, | |
m = d3Geo.geoProjectionMutator(hammerRetroazimuthalRaw), | |
p = m(phi0), | |
rotate_ = p.rotate, | |
stream_ = p.stream, | |
circle = d3Geo.geoCircle(); | |
p.parallel = function(_) { | |
if (!arguments.length) return phi0 * degrees; | |
var r = p.rotate(); | |
return m(phi0 = _ * radians).rotate(r); | |
}; | |
// Temporary hack; see hammerRetroazimuthalRotation. | |
p.rotate = function(_) { | |
if (!arguments.length) return (_ = rotate_.call(p), _[1] += phi0 * degrees, _); | |
rotate_.call(p, [_[0], _[1] - phi0 * degrees]); | |
circle.center([-_[0], -_[1]]); | |
return p; | |
}; | |
p.stream = function(stream) { | |
stream = stream_(stream); | |
stream.sphere = function() { | |
stream.polygonStart(); | |
var epsilon$$1 = 1e-2, | |
ring = circle.radius(90 - epsilon$$1)().coordinates[0], | |
n = ring.length - 1, | |
i = -1, | |
p; | |
stream.lineStart(); | |
while (++i < n) stream.point((p = ring[i])[0], p[1]); | |
stream.lineEnd(); | |
ring = circle.radius(90 + epsilon$$1)().coordinates[0]; | |
n = ring.length - 1; | |
stream.lineStart(); | |
while (--i >= 0) stream.point((p = ring[i])[0], p[1]); | |
stream.lineEnd(); | |
stream.polygonEnd(); | |
}; | |
return stream; | |
}; | |
return p | |
.scale(79.4187) | |
.parallel(45) | |
.clipAngle(180 - 1e-3); | |
}; | |
var healpixParallel = 41 + 48 / 36 + 37 / 3600; | |
var healpixLambert = cylindricalEqualAreaRaw(0); | |
function healpixRaw(H) { | |
var phi0 = healpixParallel * radians, | |
dx = collignonRaw(pi, phi0)[0] - collignonRaw(-pi, phi0)[0], | |
y0 = healpixLambert(0, phi0)[1], | |
y1 = collignonRaw(0, phi0)[1], | |
dy1 = sqrtPi - y1, | |
k = tau / H, | |
w = 4 / tau, | |
h = y0 + (dy1 * dy1 * 4) / tau; | |
function forward(lambda, phi) { | |
var point, | |
phi2 = abs(phi); | |
if (phi2 > phi0) { | |
var i = min(H - 1, max(0, floor((lambda + pi) / k))); | |
lambda += pi * (H - 1) / H - i * k; | |
point = collignonRaw(lambda, phi2); | |
point[0] = point[0] * tau / dx - tau * (H - 1) / (2 * H) + i * tau / H; | |
point[1] = y0 + (point[1] - y1) * 4 * dy1 / tau; | |
if (phi < 0) point[1] = -point[1]; | |
} else { | |
point = healpixLambert(lambda, phi); | |
} | |
point[0] *= w, point[1] /= h; | |
return point; | |
} | |
forward.invert = function(x, y) { | |
x /= w, y *= h; | |
var y2 = abs(y); | |
if (y2 > y0) { | |
var i = min(H - 1, max(0, floor((x + pi) / k))); | |
x = (x + pi * (H - 1) / H - i * k) * dx / tau; | |
var point = collignonRaw.invert(x, 0.25 * (y2 - y0) * tau / dy1 + y1); | |
point[0] -= pi * (H - 1) / H - i * k; | |
if (y < 0) point[1] = -point[1]; | |
return point; | |
} | |
return healpixLambert.invert(x, y); | |
}; | |
return forward; | |
} | |
function sphere(step) { | |
return { | |
type: "Polygon", | |
coordinates: [ | |
d3Array.range(-180, 180 + step / 2, step).map(function(x, i) { return [x, i & 1 ? 90 - 1e-6 : healpixParallel]; }) | |
.concat(d3Array.range(180, -180 - step / 2, -step).map(function(x, i) { return [x, i & 1 ? -90 + 1e-6 : -healpixParallel]; })) | |
] | |
}; | |
} | |
var healpix = function() { | |
var H = 4, | |
m = d3Geo.geoProjectionMutator(healpixRaw), | |
p = m(H), | |
stream_ = p.stream; | |
p.lobes = function(_) { | |
return arguments.length ? m(H = +_) : H; | |
}; | |
p.stream = function(stream) { | |
var rotate = p.rotate(), | |
rotateStream = stream_(stream), | |
sphereStream = (p.rotate([0, 0]), stream_(stream)); | |
p.rotate(rotate); | |
rotateStream.sphere = function() { d3Geo.geoStream(sphere(180 / H), sphereStream); }; | |
return rotateStream; | |
}; | |
return p | |
.scale(239.75); | |
}; | |
function hillRaw(K) { | |
var L = 1 + K, | |
sinBt = sin(1 / L), | |
Bt = asin(sinBt), | |
A = 2 * sqrt(pi / (B = pi + 4 * Bt * L)), | |
B, | |
rho0 = 0.5 * A * (L + sqrt(K * (2 + K))), | |
K2 = K * K, | |
L2 = L * L; | |
function forward(lambda, phi) { | |
var t = 1 - sin(phi), | |
rho, | |
omega; | |
if (t && t < 2) { | |
var theta = halfPi - phi, i = 25, delta; | |
do { | |
var sinTheta = sin(theta), | |
cosTheta = cos(theta), | |
Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta), | |
C = 1 + L2 - 2 * L * cosTheta; | |
theta -= delta = (theta - K2 * Bt - L * sinTheta + C * Bt_Bt1 -0.5 * t * B) / (2 * L * sinTheta * Bt_Bt1); | |
} while (abs(delta) > epsilon2 && --i > 0); | |
rho = A * sqrt(C); | |
omega = lambda * Bt_Bt1 / pi; | |
} else { | |
rho = A * (K + t); | |
omega = lambda * Bt / pi; | |
} | |
return [ | |
rho * sin(omega), | |
rho0 - rho * cos(omega) | |
]; | |
} | |
forward.invert = function(x, y) { | |
var rho2 = x * x + (y -= rho0) * y, | |
cosTheta = (1 + L2 - rho2 / (A * A)) / (2 * L), | |
theta = acos(cosTheta), | |
sinTheta = sin(theta), | |
Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta); | |
return [ | |
asin(x / sqrt(rho2)) * pi / Bt_Bt1, | |
asin(1 - 2 * (theta - K2 * Bt - L * sinTheta + (1 + L2 - 2 * L * cosTheta) * Bt_Bt1) / B) | |
]; | |
}; | |
return forward; | |
} | |
var hill = function() { | |
var K = 1, | |
m = d3Geo.geoProjectionMutator(hillRaw), | |
p = m(K); | |
p.ratio = function(_) { | |
return arguments.length ? m(K = +_) : K; | |
}; | |
return p | |
.scale(167.774) | |
.center([0, 18.67]); | |
}; | |
var sinuMollweidePhi = 0.7109889596207567; | |
var sinuMollweideY = 0.0528035274542; | |
function sinuMollweideRaw(lambda, phi) { | |
return phi > -sinuMollweidePhi | |
? (lambda = mollweideRaw(lambda, phi), lambda[1] += sinuMollweideY, lambda) | |
: sinusoidalRaw(lambda, phi); | |
} | |
sinuMollweideRaw.invert = function(x, y) { | |
return y > -sinuMollweidePhi | |
? mollweideRaw.invert(x, y - sinuMollweideY) | |
: sinusoidalRaw.invert(x, y); | |
}; | |
var sinuMollweide = function() { | |
return d3Geo.geoProjection(sinuMollweideRaw) | |
.rotate([-20, -55]) | |
.scale(164.263) | |
.center([0, -5.4036]); | |
}; | |
function homolosineRaw(lambda, phi) { | |
return abs(phi) > sinuMollweidePhi | |
? (lambda = mollweideRaw(lambda, phi), lambda[1] -= phi > 0 ? sinuMollweideY : -sinuMollweideY, lambda) | |
: sinusoidalRaw(lambda, phi); | |
} | |
homolosineRaw.invert = function(x, y) { | |
return abs(y) > sinuMollweidePhi | |
? mollweideRaw.invert(x, y + (y > 0 ? sinuMollweideY : -sinuMollweideY)) | |
: sinusoidalRaw.invert(x, y); | |
}; | |
var homolosine = function() { | |
return d3Geo.geoProjection(homolosineRaw) | |
.scale(152.63); | |
}; | |
function pointEqual(a, b) { | |
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon; | |
} | |
function interpolateLine(coordinates, m) { | |
var i = -1, | |
n = coordinates.length, | |
p0 = coordinates[0], | |
p1, | |
dx, | |
dy, | |
resampled = []; | |
while (++i < n) { | |
p1 = coordinates[i]; | |
dx = (p1[0] - p0[0]) / m; | |
dy = (p1[1] - p0[1]) / m; | |
for (var j = 0; j < m; ++j) resampled.push([p0[0] + j * dx, p0[1] + j * dy]); | |
p0 = p1; | |
} | |
resampled.push(p1); | |
return resampled; | |
} | |
function interpolateSphere(lobes) { | |
var coordinates = [], | |
lobe, | |
lambda0, phi0, phi1, | |
lambda2, phi2, | |
i, n = lobes[0].length; | |
// Northern Hemisphere | |
for (i = 0; i < n; ++i) { | |
lobe = lobes[0][i]; | |
lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1]; | |
lambda2 = lobe[2][0], phi2 = lobe[2][1]; | |
coordinates.push(interpolateLine([ | |
[lambda0 + epsilon, phi0 + epsilon], | |
[lambda0 + epsilon, phi1 - epsilon], | |
[lambda2 - epsilon, phi1 - epsilon], | |
[lambda2 - epsilon, phi2 + epsilon] | |
], 30)); | |
} | |
// Southern Hemisphere | |
for (i = lobes[1].length - 1; i >= 0; --i) { | |
lobe = lobes[1][i]; | |
lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1]; | |
lambda2 = lobe[2][0], phi2 = lobe[2][1]; | |
coordinates.push(interpolateLine([ | |
[lambda2 - epsilon, phi2 - epsilon], | |
[lambda2 - epsilon, phi1 + epsilon], | |
[lambda0 + epsilon, phi1 + epsilon], | |
[lambda0 + epsilon, phi0 - epsilon] | |
], 30)); | |
} | |
return { | |
type: "Polygon", | |
coordinates: [d3Array.merge(coordinates)] | |
}; | |
} | |
var interrupt = function(project, lobes) { | |
var sphere = interpolateSphere(lobes); | |
lobes = lobes.map(function(lobe) { | |
return lobe.map(function(l) { | |
return [ | |
[l[0][0] * radians, l[0][1] * radians], | |
[l[1][0] * radians, l[1][1] * radians], | |
[l[2][0] * radians, l[2][1] * radians] | |
]; | |
}); | |
}); | |
var bounds = lobes.map(function(lobe) { | |
return lobe.map(function(l) { | |
var x0 = project(l[0][0], l[0][1])[0], | |
x1 = project(l[2][0], l[2][1])[0], | |
y0 = project(l[1][0], l[0][1])[1], | |
y1 = project(l[1][0], l[1][1])[1], | |
t; | |
if (y0 > y1) t = y0, y0 = y1, y1 = t; | |
return [[x0, y0], [x1, y1]]; | |
}); | |
}); | |
function forward(lambda, phi) { | |
var sign$$1 = phi < 0 ? -1 : +1, lobe = lobes[+(phi < 0)]; | |
for (var i = 0, n = lobe.length - 1; i < n && lambda > lobe[i][2][0]; ++i); | |
var p = project(lambda - lobe[i][1][0], phi); | |
p[0] += project(lobe[i][1][0], sign$$1 * phi > sign$$1 * lobe[i][0][1] ? lobe[i][0][1] : phi)[0]; | |
return p; | |
} | |
// Assumes mutually exclusive bounding boxes for lobes. | |
if (project.invert) forward.invert = function(x, y) { | |
var bound = bounds[+(y < 0)], lobe = lobes[+(y < 0)]; | |
for (var i = 0, n = bound.length; i < n; ++i) { | |
var b = bound[i]; | |
if (b[0][0] <= x && x < b[1][0] && b[0][1] <= y && y < b[1][1]) { | |
var p = project.invert(x - project(lobe[i][1][0], 0)[0], y); | |
p[0] += lobe[i][1][0]; | |
return pointEqual(forward(p[0], p[1]), [x, y]) ? p : null; | |
} | |
} | |
}; | |
var p = d3Geo.geoProjection(forward), | |
stream_ = p.stream; | |
p.stream = function(stream) { | |
var rotate = p.rotate(), | |
rotateStream = stream_(stream), | |
sphereStream = (p.rotate([0, 0]), stream_(stream)); | |
p.rotate(rotate); | |
rotateStream.sphere = function() { d3Geo.geoStream(sphere, sphereStream); }; | |
return rotateStream; | |
}; | |
return p; | |
}; | |
var lobes = [[ // northern hemisphere | |
[[-180, 0], [-100, 90], [ -40, 0]], | |
[[ -40, 0], [ 30, 90], [ 180, 0]] | |
], [ // southern hemisphere | |
[[-180, 0], [-160, -90], [-100, 0]], | |
[[-100, 0], [ -60, -90], [ -20, 0]], | |
[[ -20, 0], [ 20, -90], [ 80, 0]], | |
[[ 80, 0], [ 140, -90], [ 180, 0]] | |
]]; | |
var boggs$1 = function() { | |
return interrupt(boggsRaw, lobes) | |
.scale(160.857); | |
}; | |
var lobes$1 = [[ // northern hemisphere | |
[[-180, 0], [-100, 90], [ -40, 0]], | |
[[ -40, 0], [ 30, 90], [ 180, 0]] | |
], [ // southern hemisphere | |
[[-180, 0], [-160, -90], [-100, 0]], | |
[[-100, 0], [ -60, -90], [ -20, 0]], | |
[[ -20, 0], [ 20, -90], [ 80, 0]], | |
[[ 80, 0], [ 140, -90], [ 180, 0]] | |
]]; | |
var homolosine$1 = function() { | |
return interrupt(homolosineRaw, lobes$1) | |
.scale(152.63); | |
}; | |
var lobes$2 = [[ // northern hemisphere | |
[[-180, 0], [-100, 90], [ -40, 0]], | |
[[ -40, 0], [ 30, 90], [ 180, 0]] | |
], [ // southern hemisphere | |
[[-180, 0], [-160, -90], [-100, 0]], | |
[[-100, 0], [ -60, -90], [ -20, 0]], | |
[[ -20, 0], [ 20, -90], [ 80, 0]], | |
[[ 80, 0], [ 140, -90], [ 180, 0]] | |
]]; | |
var mollweide$1 = function() { | |
return interrupt(mollweideRaw, lobes$2) | |
.scale(169.529); | |
}; | |
var lobes$3 = [[ // northern hemisphere | |
[[-180, 0], [ -90, 90], [ 0, 0]], | |
[[ 0, 0], [ 90, 90], [ 180, 0]] | |
], [ // southern hemisphere | |
[[-180, 0], [ -90, -90], [ 0, 0]], | |
[[ 0, 0], [ 90, -90], [ 180, 0]] | |
]]; | |
var mollweideHemispheres = function() { | |
return interrupt(mollweideRaw, lobes$3) | |
.scale(169.529) | |
.rotate([20, 0]); | |
}; | |
var lobes$4 = [[ // northern hemisphere | |
[[-180, 35], [ -30, 90], [ 0, 35]], | |
[[ 0, 35], [ 30, 90], [ 180, 35]] | |
], [ // southern hemisphere | |
[[-180, -10], [-102, -90], [ -65, -10]], | |
[[ -65, -10], [ 5, -90], [ 77, -10]], | |
[[ 77, -10], [ 103, -90], [ 180, -10]] | |
]]; | |
var sinuMollweide$1 = function() { | |
return interrupt(sinuMollweideRaw, lobes$4) | |
.rotate([-20, -55]) | |
.scale(164.263) | |
.center([0, -5.4036]); | |
}; | |
var lobes$5 = [[ // northern hemisphere | |
[[-180, 0], [-110, 90], [ -40, 0]], | |
[[ -40, 0], [ 0, 90], [ 40, 0]], | |
[[ 40, 0], [ 110, 90], [ 180, 0]] | |
], [ // southern hemisphere | |
[[-180, 0], [-110, -90], [ -40, 0]], | |
[[ -40, 0], [ 0, -90], [ 40, 0]], | |
[[ 40, 0], [ 110, -90], [ 180, 0]] | |
]]; | |
var sinusoidal$1 = function() { | |
return interrupt(sinusoidalRaw, lobes$5) | |
.scale(152.63) | |
.rotate([-20, 0]); | |
}; | |
function kavrayskiy7Raw(lambda, phi) { | |
return [3 / tau * lambda * sqrt(pi * pi / 3 - phi * phi), phi]; | |
} | |
kavrayskiy7Raw.invert = function(x, y) { | |
return [tau / 3 * x / sqrt(pi * pi / 3 - y * y), y]; | |
}; | |
var kavrayskiy7 = function() { | |
return d3Geo.geoProjection(kavrayskiy7Raw) | |
.scale(158.837); | |
}; | |
function lagrangeRaw(n) { | |
function forward(lambda, phi) { | |
if (abs(abs(phi) - halfPi) < epsilon) return [0, phi < 0 ? -2 : 2]; | |
var sinPhi = sin(phi), | |
v = pow((1 + sinPhi) / (1 - sinPhi), n / 2), | |
c = 0.5 * (v + 1 / v) + cos(lambda *= n); | |
return [ | |
2 * sin(lambda) / c, | |
(v - 1 / v) / c | |
]; | |
} | |
forward.invert = function(x, y) { | |
var y0 = abs(y); | |
if (abs(y0 - 2) < epsilon) return x ? null : [0, sign(y) * halfPi]; | |
if (y0 > 2) return null; | |
x /= 2, y /= 2; | |
var x2 = x * x, | |
y2 = y * y, | |
t = 2 * y / (1 + x2 + y2); // tanh(nPhi) | |
t = pow((1 + t) / (1 - t), 1 / n); | |
return [ | |
atan2(2 * x, 1 - x2 - y2) / n, | |
asin((t - 1) / (t + 1)) | |
]; | |
}; | |
return forward; | |
} | |
var lagrange = function() { | |
var n = 0.5, | |
m = d3Geo.geoProjectionMutator(lagrangeRaw), | |
p = m(n); | |
p.spacing = function(_) { | |
return arguments.length ? m(n = +_) : n; | |
}; | |
return p | |
.scale(124.75); | |
}; | |
var pi_sqrt2 = pi / sqrt2; | |
function larriveeRaw(lambda, phi) { | |
return [ | |
lambda * (1 + sqrt(cos(phi))) / 2, | |
phi / (cos(phi / 2) * cos(lambda / 6)) | |
]; | |
} | |
larriveeRaw.invert = function(x, y) { | |
var x0 = abs(x), | |
y0 = abs(y), | |
lambda = epsilon, | |
phi = halfPi; | |
if (y0 < pi_sqrt2) phi *= y0 / pi_sqrt2; | |
else lambda += 6 * acos(pi_sqrt2 / y0); | |
for (var i = 0; i < 25; i++) { | |
var sinPhi = sin(phi), | |
sqrtcosPhi = sqrt(cos(phi)), | |
sinPhi_2 = sin(phi / 2), | |
cosPhi_2 = cos(phi / 2), | |
sinLambda_6 = sin(lambda / 6), | |
cosLambda_6 = cos(lambda / 6), | |
f0 = 0.5 * lambda * (1 + sqrtcosPhi) - x0, | |
f1 = phi / (cosPhi_2 * cosLambda_6) - y0, | |
df0dPhi = sqrtcosPhi ? -0.25 * lambda * sinPhi / sqrtcosPhi : 0, | |
df0dLambda = 0.5 * (1 + sqrtcosPhi), | |
df1dPhi = (1 +0.5 * phi * sinPhi_2 / cosPhi_2) / (cosPhi_2 * cosLambda_6), | |
df1dLambda = (phi / cosPhi_2) * (sinLambda_6 / 6) / (cosLambda_6 * cosLambda_6), | |
denom = df0dPhi * df1dLambda - df1dPhi * df0dLambda, | |
dPhi = (f0 * df1dLambda - f1 * df0dLambda) / denom, | |
dLambda = (f1 * df0dPhi - f0 * df1dPhi) / denom; | |
phi -= dPhi; | |
lambda -= dLambda; | |
if (abs(dPhi) < epsilon && abs(dLambda) < epsilon) break; | |
} | |
return [x < 0 ? -lambda : lambda, y < 0 ? -phi : phi]; | |
}; | |
var larrivee = function() { | |
return d3Geo.geoProjection(larriveeRaw) | |
.scale(97.2672); | |
}; | |
function laskowskiRaw(lambda, phi) { | |
var lambda2 = lambda * lambda, phi2 = phi * phi; | |
return [ | |
lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)), | |
phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032)) | |
]; | |
} | |
laskowskiRaw.invert = function(x, y) { | |
var lambda = sign(x) * pi, | |
phi = y / 2, | |
i = 50; | |
do { | |
var lambda2 = lambda * lambda, | |
phi2 = phi * phi, | |
lambdaPhi = lambda * phi, | |
fx = lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)) - x, | |
fy = phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032)) - y, | |
deltaxDeltaLambda = 0.975534 - phi2 * (0.119161 + 3 * lambda2 * 0.0143059 + phi2 * 0.0547009), | |
deltaxDeltaPhi = -lambdaPhi * (2 * 0.119161 + 4 * 0.0547009 * phi2 + 2 * 0.0143059 * lambda2), | |
deltayDeltaLambda = lambdaPhi * (2 * 0.0802894 + 4 * 0.000199025 * lambda2 + 2 * -0.02855 * phi2), | |
deltayDeltaPhi = 1.00384 + lambda2 * (0.0802894 + 0.000199025 * lambda2) + phi2 * (3 * (0.0998909 - 0.02855 * lambda2) - 5 * 0.0491032 * phi2), | |
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda, | |
deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator, | |
deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator; | |
lambda -= deltaLambda, phi -= deltaPhi; | |
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0); | |
return i && [lambda, phi]; | |
}; | |
var laskowski = function() { | |
return d3Geo.geoProjection(laskowskiRaw) | |
.scale(139.98); | |
}; | |
function littrowRaw(lambda, phi) { | |
return [ | |
sin(lambda) / cos(phi), | |
tan(phi) * cos(lambda) | |
]; | |
} | |
littrowRaw.invert = function(x, y) { | |
var x2 = x * x, | |
y2 = y * y, | |
y2_1 = y2 + 1, | |
cosPhi = x | |
? sqrt1_2 * sqrt((y2_1 - sqrt(x2 * x2 + 2 * x2 * (y2 - 1) + y2_1 * y2_1)) / x2 + 1) | |
: 1 / sqrt(y2_1); | |
return [ | |
asin(x * cosPhi), | |
sign(y) * acos(cosPhi) | |
]; | |
}; | |
var littrow = function() { | |
return d3Geo.geoProjection(littrowRaw) | |
.scale(144.049) | |
.clipAngle(90 - 1e-3); | |
}; | |
function loximuthalRaw(phi0) { | |
var cosPhi0 = cos(phi0), | |
tanPhi0 = tan(quarterPi + phi0 / 2); | |
function forward(lambda, phi) { | |
var y = phi - phi0, | |
x = abs(y) < epsilon ? lambda * cosPhi0 | |
: abs(x = quarterPi + phi / 2) < epsilon || abs(abs(x) - halfPi) < epsilon | |
? 0 : lambda * y / log(tan(x) / tanPhi0); | |
return [x, y]; | |
} | |
forward.invert = function(x, y) { | |
var lambda, | |
phi = y + phi0; | |
return [ | |
abs(y) < epsilon ? x / cosPhi0 | |
: (abs(lambda = quarterPi + phi / 2) < epsilon || abs(abs(lambda) - halfPi) < epsilon) ? 0 | |
: x * log(tan(lambda) / tanPhi0) / y, | |
phi | |
]; | |
}; | |
return forward; | |
} | |
var loximuthal = function() { | |
return parallel1(loximuthalRaw) | |
.parallel(40) | |
.scale(158.837); | |
}; | |
function millerRaw(lambda, phi) { | |
return [lambda, 1.25 * log(tan(quarterPi + 0.4 * phi))]; | |
} | |
millerRaw.invert = function(x, y) { | |
return [x, 2.5 * atan(exp(0.8 * y)) - 0.625 * pi]; | |
}; | |
var miller = function() { | |
return d3Geo.geoProjection(millerRaw) | |
.scale(108.318); | |
}; | |
function modifiedStereographicRaw(C) { | |
var m = C.length - 1; | |
function forward(lambda, phi) { | |
var cosPhi = cos(phi), | |
k = 2 / (1 + cosPhi * cos(lambda)), | |
zr = k * cosPhi * sin(lambda), | |
zi = k * sin(phi), | |
i = m, | |
w = C[i], | |
ar = w[0], | |
ai = w[1], | |
t; | |
while (--i >= 0) { | |
w = C[i]; | |
ar = w[0] + zr * (t = ar) - zi * ai; | |
ai = w[1] + zr * ai + zi * t; | |
} | |
ar = zr * (t = ar) - zi * ai; | |
ai = zr * ai + zi * t; | |
return [ar, ai]; | |
} | |
forward.invert = function(x, y) { | |
var i = 20, | |
zr = x, | |
zi = y; | |
do { | |
var j = m, | |
w = C[j], | |
ar = w[0], | |
ai = w[1], | |
br = 0, | |
bi = 0, | |
t; | |
while (--j >= 0) { | |
w = C[j]; | |
br = ar + zr * (t = br) - zi * bi; | |
bi = ai + zr * bi + zi * t; | |
ar = w[0] + zr * (t = ar) - zi * ai; | |
ai = w[1] + zr * ai + zi * t; | |
} | |
br = ar + zr * (t = br) - zi * bi; | |
bi = ai + zr * bi + zi * t; | |
ar = zr * (t = ar) - zi * ai - x; | |
ai = zr * ai + zi * t - y; | |
var denominator = br * br + bi * bi, deltar, deltai; | |
zr -= deltar = (ar * br + ai * bi) / denominator; | |
zi -= deltai = (ai * br - ar * bi) / denominator; | |
} while (abs(deltar) + abs(deltai) > epsilon * epsilon && --i > 0); | |
if (i) { | |
var rho = sqrt(zr * zr + zi * zi), | |
c = 2 * atan(rho * 0.5), | |
sinc = sin(c); | |
return [atan2(zr * sinc, rho * cos(c)), rho ? asin(zi * sinc / rho) : 0]; | |
} | |
}; | |
return forward; | |
} | |
var alaska = [[0.9972523, 0], [0.0052513, -0.0041175], [0.0074606, 0.0048125], [-0.0153783, -0.1968253], [0.0636871, -0.1408027], [0.3660976, -0.2937382]]; | |
var gs48 = [[0.98879, 0], [0, 0], [-0.050909, 0], [0, 0], [0.075528, 0]]; | |
var gs50 = [[0.9842990, 0], [0.0211642, 0.0037608], [-0.1036018, -0.0575102], [-0.0329095, -0.0320119], [0.0499471, 0.1223335], [0.0260460, 0.0899805], [0.0007388, -0.1435792], [0.0075848, -0.1334108], [-0.0216473, 0.0776645], [-0.0225161, 0.0853673]]; | |
var miller$1 = [[0.9245, 0], [0, 0], [0.01943, 0]]; | |
var lee = [[0.721316, 0], [0, 0], [-0.00881625, -0.00617325]]; | |
function modifiedStereographicAlaska() { | |
return modifiedStereographic(alaska, [152, -64]) | |
.scale(1500) | |
.center([-160.908, 62.4864]) | |
.clipAngle(25); | |
} | |
function modifiedStereographicGs48() { | |
return modifiedStereographic(gs48, [95, -38]) | |
.scale(1000) | |
.clipAngle(55) | |
.center([-96.5563, 38.8675]); | |
} | |
function modifiedStereographicGs50() { | |
return modifiedStereographic(gs50, [120, -45]) | |
.scale(359.513) | |
.clipAngle(55) | |
.center([-117.474, 53.0628]); | |
} | |
function modifiedStereographicMiller() { | |
return modifiedStereographic(miller$1, [-20, -18]) | |
.scale(209.091) | |
.center([20, 16.7214]) | |
.clipAngle(82); | |
} | |
function modifiedStereographicLee() { | |
return modifiedStereographic(lee, [165, 10]) | |
.scale(250) | |
.clipAngle(130) | |
.center([-165, -10]); | |
} | |
function modifiedStereographic(coefficients, rotate) { | |
var p = d3Geo.geoProjection(modifiedStereographicRaw(coefficients)).rotate(rotate).clipAngle(90), | |
r = d3Geo.geoRotation(rotate), | |
center = p.center; | |
delete p.rotate; | |
p.center = function(_) { | |
return arguments.length ? center(r(_)) : r.invert(center()); | |
}; | |
return p; | |
} | |
var sqrt6 = sqrt(6); | |
var sqrt7 = sqrt(7); | |
function mtFlatPolarParabolicRaw(lambda, phi) { | |
var theta = asin(7 * sin(phi) / (3 * sqrt6)); | |
return [ | |
sqrt6 * lambda * (2 * cos(2 * theta / 3) - 1) / sqrt7, | |
9 * sin(theta / 3) / sqrt7 | |
]; | |
} | |
mtFlatPolarParabolicRaw.invert = function(x, y) { | |
var theta = 3 * asin(y * sqrt7 / 9); | |
return [ | |
x * sqrt7 / (sqrt6 * (2 * cos(2 * theta / 3) - 1)), | |
asin(sin(theta) * 3 * sqrt6 / 7) | |
]; | |
}; | |
var mtFlatPolarParabolic = function() { | |
return d3Geo.geoProjection(mtFlatPolarParabolicRaw) | |
.scale(164.859); | |
}; | |
function mtFlatPolarQuarticRaw(lambda, phi) { | |
var k = (1 + sqrt1_2) * sin(phi), | |
theta = phi; | |
for (var i = 0, delta; i < 25; i++) { | |
theta -= delta = (sin(theta / 2) + sin(theta) - k) / (0.5 * cos(theta / 2) + cos(theta)); | |
if (abs(delta) < epsilon) break; | |
} | |
return [ | |
lambda * (1 + 2 * cos(theta) / cos(theta / 2)) / (3 * sqrt2), | |
2 * sqrt(3) * sin(theta / 2) / sqrt(2 + sqrt2) | |
]; | |
} | |
mtFlatPolarQuarticRaw.invert = function(x, y) { | |
var sinTheta_2 = y * sqrt(2 + sqrt2) / (2 * sqrt(3)), | |
theta = 2 * asin(sinTheta_2); | |
return [ | |
3 * sqrt2 * x / (1 + 2 * cos(theta) / cos(theta / 2)), | |
asin((sinTheta_2 + sin(theta)) / (1 + sqrt1_2)) | |
]; | |
}; | |
var mtFlatPolarQuartic = function() { | |
return d3Geo.geoProjection(mtFlatPolarQuarticRaw) | |
.scale(188.209); | |
}; | |
function mtFlatPolarSinusoidalRaw(lambda, phi) { | |
var A = sqrt(6 / (4 + pi)), | |
k = (1 + pi / 4) * sin(phi), | |
theta = phi / 2; | |
for (var i = 0, delta; i < 25; i++) { | |
theta -= delta = (theta / 2 + sin(theta) - k) / (0.5 + cos(theta)); | |
if (abs(delta) < epsilon) break; | |
} | |
return [ | |
A * (0.5 + cos(theta)) * lambda / 1.5, | |
A * theta | |
]; | |
} | |
mtFlatPolarSinusoidalRaw.invert = function(x, y) { | |
var A = sqrt(6 / (4 + pi)), | |
theta = y / A; | |
if (abs(abs(theta) - halfPi) < epsilon) theta = theta < 0 ? -halfPi : halfPi; | |
return [ | |
1.5 * x / (A * (0.5 + cos(theta))), | |
asin((theta / 2 + sin(theta)) / (1 + pi / 4)) | |
]; | |
}; | |
var mtFlatPolarSinusoidal = function() { | |
return d3Geo.geoProjection(mtFlatPolarSinusoidalRaw) | |
.scale(166.518); | |
}; | |
function naturalEarthRaw(lambda, phi) { | |
var phi2 = phi * phi, phi4 = phi2 * phi2; | |
return [ | |
lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))), | |
phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) | |
]; | |
} | |
naturalEarthRaw.invert = function(x, y) { | |
var phi = y, i = 25, delta; | |
do { | |
var phi2 = phi * phi, phi4 = phi2 * phi2; | |
phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) / | |
(1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4))); | |
} while (abs(delta) > epsilon && --i > 0); | |
return [ | |
x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))), | |
phi | |
]; | |
}; | |
var naturalEarth = function() { | |
return d3Geo.geoProjection(naturalEarthRaw) | |
.scale(175.295); | |
}; | |
function nellHammerRaw(lambda, phi) { | |
return [ | |
lambda * (1 + cos(phi)) / 2, | |
2 * (phi - tan(phi / 2)) | |
]; | |
} | |
nellHammerRaw.invert = function(x, y) { | |
var p = y / 2; | |
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; ++i) { | |
var c = cos(y / 2); | |
y -= delta = (y - tan(y / 2) - p) / (1 - 0.5 / (c * c)); | |
} | |
return [ | |
2 * x / (1 + cos(y)), | |
y | |
]; | |
}; | |
var nellHammer = function() { | |
return d3Geo.geoProjection(nellHammerRaw) | |
.scale(152.63); | |
}; | |
// Based on Java implementation by Bojan Savric. | |
// https://github.com/OSUCartography/JMapProjLib/blob/master/src/com/jhlabs/map/proj/PattersonProjection.java | |
var pattersonK1 = 1.0148; | |
var pattersonK2 = 0.23185; | |
var pattersonK3 = -0.14499; | |
var pattersonK4 = 0.02406; | |
var pattersonC1 = pattersonK1; | |
var pattersonC2 = 5 * pattersonK2; | |
var pattersonC3 = 7 * pattersonK3; | |
var pattersonC4 = 9 * pattersonK4; | |
var pattersonYmax = 1.790857183; | |
function pattersonRaw(lambda, phi) { | |
var phi2 = phi * phi; | |
return [ | |
lambda, | |
phi * (pattersonK1 + phi2 * phi2 * (pattersonK2 + phi2 * (pattersonK3 + pattersonK4 * phi2))) | |
]; | |
} | |
pattersonRaw.invert = function(x, y) { | |
if (y > pattersonYmax) y = pattersonYmax; | |
else if (y < -pattersonYmax) y = -pattersonYmax; | |
var yc = y, delta; | |
do { // Newton-Raphson | |
var y2 = yc * yc; | |
yc -= delta = ((yc * (pattersonK1 + y2 * y2 * (pattersonK2 + y2 * (pattersonK3 + pattersonK4 * y2)))) - y) / (pattersonC1 + y2 * y2 * (pattersonC2 + y2 * (pattersonC3 + pattersonC4 * y2))); | |
} while (abs(delta) > epsilon); | |
return [x, yc]; | |
}; | |
var patterson = function() { | |
return d3Geo.geoProjection(pattersonRaw) | |
.scale(139.319); | |
}; | |
function polyconicRaw(lambda, phi) { | |
if (abs(phi) < epsilon) return [lambda, 0]; | |
var tanPhi = tan(phi), | |
k = lambda * sin(phi); | |
return [ | |
sin(k) / tanPhi, | |
phi + (1 - cos(k)) / tanPhi | |
]; | |
} | |
polyconicRaw.invert = function(x, y) { | |
if (abs(y) < epsilon) return [x, 0]; | |
var k = x * x + y * y, | |
phi = y * 0.5, | |
i = 10, delta; | |
do { | |
var tanPhi = tan(phi), | |
secPhi = 1 / cos(phi), | |
j = k - 2 * y * phi + phi * phi; | |
phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi); | |
} while (abs(delta) > epsilon && --i > 0); | |
tanPhi = tan(phi); | |
return [ | |
(abs(y) < abs(phi + 1 / tanPhi) ? asin(x * tanPhi) : sign(x) * (acos(abs(x * tanPhi)) + halfPi)) / sin(phi), | |
phi | |
]; | |
}; | |
var polyconic = function() { | |
return d3Geo.geoProjection(polyconicRaw) | |
.scale(103.74); | |
}; | |
// Note: 6-element arrays are used to denote the 3x3 affine transform matrix: | |
// [a, b, c, | |
// d, e, f, | |
// 0, 0, 1] - this redundant row is left out. | |
// Transform matrix for [a0, a1] -> [b0, b1]. | |
var matrix = function(a, b) { | |
var u = subtract(a[1], a[0]), | |
v = subtract(b[1], b[0]), | |
phi = angle$1(u, v), | |
s = length(u) / length(v); | |
return multiply([ | |
1, 0, a[0][0], | |
0, 1, a[0][1] | |
], multiply([ | |
s, 0, 0, | |
0, s, 0 | |
], multiply([ | |
cos(phi), sin(phi), 0, | |
-sin(phi), cos(phi), 0 | |
], [ | |
1, 0, -b[0][0], | |
0, 1, -b[0][1] | |
]))); | |
}; | |
// Inverts a transform matrix. | |
function inverse(m) { | |
var k = 1 / (m[0] * m[4] - m[1] * m[3]); | |
return [ | |
k * m[4], -k * m[1], k * (m[1] * m[5] - m[2] * m[4]), | |
-k * m[3], k * m[0], k * (m[2] * m[3] - m[0] * m[5]) | |
]; | |
} | |
// Multiplies two 3x2 matrices. | |
function multiply(a, b) { | |
return [ | |
a[0] * b[0] + a[1] * b[3], | |
a[0] * b[1] + a[1] * b[4], | |
a[0] * b[2] + a[1] * b[5] + a[2], | |
a[3] * b[0] + a[4] * b[3], | |
a[3] * b[1] + a[4] * b[4], | |
a[3] * b[2] + a[4] * b[5] + a[5] | |
]; | |
} | |
// Subtracts 2D vectors. | |
function subtract(a, b) { | |
return [a[0] - b[0], a[1] - b[1]]; | |
} | |
// Magnitude of a 2D vector. | |
function length(v) { | |
return sqrt(v[0] * v[0] + v[1] * v[1]); | |
} | |
// Angle between two 2D vectors. | |
function angle$1(a, b) { | |
return atan2(a[0] * b[1] - a[1] * b[0], a[0] * b[0] + a[1] * b[1]); | |
} | |
// Creates a polyhedral projection. | |
// * root: a spanning tree of polygon faces. Nodes are automatically | |
// augmented with a transform matrix. | |
// * face: a function that returns the appropriate node for a given {lambda, phi} | |
// point (radians). | |
// * r: rotation angle for final polyhedral net. Defaults to -pi / 6 (for | |
// butterflies). | |
var polyhedral = function(root, face, r) { | |
r = r == null ? -pi / 6 : r; // TODO automate | |
recurse(root, {transform: [ | |
cos(r), sin(r), 0, | |
-sin(r), cos(r), 0 | |
]}); | |
function recurse(node, parent) { | |
node.edges = faceEdges(node.face); | |
// Find shared edge. | |
if (parent.face) { | |
var shared = node.shared = sharedEdge(node.face, parent.face), | |
m = matrix(shared.map(parent.project), shared.map(node.project)); | |
node.transform = parent.transform ? multiply(parent.transform, m) : m; | |
// Replace shared edge in parent edges array. | |
var edges = parent.edges; | |
for (var i = 0, n = edges.length; i < n; ++i) { | |
if (pointEqual$1(shared[0], edges[i][1]) && pointEqual$1(shared[1], edges[i][0])) edges[i] = node; | |
if (pointEqual$1(shared[0], edges[i][0]) && pointEqual$1(shared[1], edges[i][1])) edges[i] = node; | |
} | |
edges = node.edges; | |
for (i = 0, n = edges.length; i < n; ++i) { | |
if (pointEqual$1(shared[0], edges[i][0]) && pointEqual$1(shared[1], edges[i][1])) edges[i] = parent; | |
if (pointEqual$1(shared[0], edges[i][1]) && pointEqual$1(shared[1], edges[i][0])) edges[i] = parent; | |
} | |
} else { | |
node.transform = parent.transform; | |
} | |
if (node.children) { | |
node.children.forEach(function(child) { | |
recurse(child, node); | |
}); | |
} | |
return node; | |
} | |
function forward(lambda, phi) { | |
var node = face(lambda, phi), | |
point = node.project([lambda * degrees, phi * degrees]), | |
t; | |
if (t = node.transform) { | |
return [ | |
t[0] * point[0] + t[1] * point[1] + t[2], | |
-(t[3] * point[0] + t[4] * point[1] + t[5]) | |
]; | |
} | |
point[1] = -point[1]; | |
return point; | |
} | |
// Naive inverse! A faster solution would use bounding boxes, or even a | |
// polygonal quadtree. | |
if (hasInverse(root)) forward.invert = function(x, y) { | |
var coordinates = faceInvert(root, [x, -y]); | |
return coordinates && (coordinates[0] *= radians, coordinates[1] *= radians, coordinates); | |
}; | |
function faceInvert(node, coordinates) { | |
var invert = node.project.invert, | |
t = node.transform, | |
point = coordinates; | |
if (t) { | |
t = inverse(t); | |
point = [ | |
t[0] * point[0] + t[1] * point[1] + t[2], | |
(t[3] * point[0] + t[4] * point[1] + t[5]) | |
]; | |
} | |
if (invert && node === faceDegrees(p = invert(point))) return p; | |
var p, | |
children = node.children; | |
for (var i = 0, n = children && children.length; i < n; ++i) { | |
if (p = faceInvert(children[i], coordinates)) return p; | |
} | |
} | |
function faceDegrees(coordinates) { | |
return face(coordinates[0] * radians, coordinates[1] * radians); | |
} | |
var proj = d3Geo.geoProjection(forward), | |
stream_ = proj.stream; | |
console.log(d3Geo.clipPolygon); | |
proj.stream = function(stream) { | |
var rotate = proj.rotate(), | |
rotateStream = stream_(stream), | |
sphereStream = (proj.rotate([0, 0]), stream_(stream)); | |
proj.rotate(rotate); | |
rotateStream.sphere = function() { | |
sphereStream.polygonStart(); | |
sphereStream.lineStart(); | |
outline(sphereStream, root); | |
sphereStream.lineEnd(); | |
sphereStream.polygonEnd(); | |
}; | |
return rotateStream; | |
}; | |
//console.log('proj.clipAngle', proj.clipAngle(180)); | |
return proj; | |
}; | |
function outline(stream, node, parent) { | |
var point, | |
edges = node.edges, | |
n = edges.length, | |
edge, | |
multiPoint = {type: "MultiPoint", coordinates: node.face}, | |
notPoles = node.face.filter(function(d) { return abs(d[1]) !== 90; }), | |
b = d3Geo.geoBounds({type: "MultiPoint", coordinates: notPoles}), | |
inside = false, | |
j = -1, | |
dx = b[1][0] - b[0][0]; | |
// TODO | |
var c = dx === 180 || dx === 360 | |
? [(b[0][0] + b[1][0]) / 2, (b[0][1] + b[1][1]) / 2] | |
: d3Geo.geoCentroid(multiPoint); | |
// First find the shared edge… | |
if (parent) while (++j < n) { | |
if (edges[j] === parent) break; | |
} | |
++j; | |
for (var i = 0; i < n; ++i) { | |
edge = edges[(i + j) % n]; | |
if (Array.isArray(edge)) { | |
if (!inside) { | |
stream.point((point = d3Geo.geoInterpolate(edge[0], c)(epsilon))[0], point[1]); | |
inside = true; | |
} | |
stream.point((point = d3Geo.geoInterpolate(edge[1], c)(epsilon))[0], point[1]); | |
} else { | |
inside = false; | |
if (edge !== parent) outline(stream, edge, node); | |
} | |
} | |
} | |
// Tests equality of two spherical points. | |
function pointEqual$1(a, b) { | |
return a && b && a[0] === b[0] && a[1] === b[1]; | |
} | |
// Finds a shared edge given two clockwise polygons. | |
function sharedEdge(a, b) { | |
var x, y, n = a.length, found = null; | |
for (var i = 0; i < n; ++i) { | |
x = a[i]; | |
for (var j = b.length; --j >= 0;) { | |
y = b[j]; | |
if (x[0] === y[0] && x[1] === y[1]) { | |
if (found) return [found, x]; | |
found = x; | |
} | |
} | |
} | |
} | |
// Converts an array of n face vertices to an array of n + 1 edges. | |
function faceEdges(face) { | |
var n = face.length, | |
edges = []; | |
for (var a = face[n - 1], i = 0; i < n; ++i) edges.push([a, a = face[i]]); | |
return edges; | |
} | |
function hasInverse(node) { | |
return node.project.invert || node.children && node.children.some(hasInverse); | |
} | |
var phi1 = atan(sqrt1_2) * degrees; | |
var cube = [ | |
[0, phi1], [90, phi1], [180, phi1], [-90, phi1], | |
[0, -phi1], [90, -phi1], [180, -phi1], [-90, -phi1] | |
]; | |
var cube$1 = [ | |
[0, 3, 2, 1], // N | |
[0, 1, 5, 4], | |
[1, 2, 6, 5], | |
[2, 3, 7, 6], | |
[3, 0, 4, 7], | |
[4, 5, 6, 7] // S | |
].map(function(face) { | |
return face.map(function(i) { | |
return cube[i]; | |
}); | |
}); | |
var f3 = function(faceProjection) { | |
// it is possible to pass a specific projection on each face | |
// by default is is a gnomonic projection centered on the face's centroid | |
// scale 1 by convention | |
faceProjection = faceProjection || function(face) { | |
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face}); | |
return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]); | |
}; | |
// the faces from the cube each yield | |
// - face: its four vertices | |
// - contains: does this face contain a point? | |
// - project: local projection on this face | |
var faces = cube$1.map(function(face) { | |
var polygon = face.slice(); | |
polygon.push(polygon[0]); | |
return { | |
face: face, | |
contains: function(lambda, phi) { | |
return d3Geo.geoContains({ type: "Polygon", coordinates: [ polygon ] }, | |
[lambda * degrees, phi * degrees]); | |
}, | |
project: faceProjection(face) | |
}; | |
}); | |
// Build a tree of the faces, starting with face 0 (North Pole) | |
// which has no parent (-1); the next four faces around the equator | |
// are attached to the north face (0); the face containing the South Pole | |
// is attached to South America (4) | |
[-1, 0, 0, 0, 0, 4].forEach(function(d, i) { | |
var node = faces[d]; | |
node && (node.children || (node.children = [])).push(faces[i]); | |
}); | |
// Polyhedral projection | |
return polyhedral(faces[0], function(lambda, phi) { | |
for (var i = 0; i < faces.length; i++) { | |
if (faces[i].contains(lambda, phi)) return faces[i]; | |
} | |
}, | |
-pi/4 // rotation of the root face in the projected (pixel) space | |
) | |
.scale(83) // TODO: perfect fit | |
.rotate([28,-4,0]) // See that California touches the corner, and Australia | |
.center([0, 90]) // let's put the North Pole in the page's center | |
.clipAngle(180); // seems like the only way to say we don't want antimeridian clipping | |
}; | |
// TODO generate on-the-fly to avoid external modification. | |
var octahedron = [ | |
[0, 90], | |
[-90, 0], [0, 0], [90, 0], [180, 0], | |
[0, -90] | |
]; | |
var octahedron$1 = [ | |
[0, 2, 1], | |
[0, 3, 2], | |
[5, 1, 2], | |
[5, 2, 3], | |
[0, 1, 4], | |
[0, 4, 3], | |
[5, 4, 1], | |
[5, 3, 4] | |
].map(function(face) { | |
return face.map(function(i) { | |
return octahedron[i]; | |
}); | |
}); | |
var kx = 2 / sqrt(3); | |
function collignonK(a, b) { | |
var p = collignonRaw(a, b); | |
return [p[0] * kx, p[1]]; | |
} | |
collignonK.invert = function(x,y) { | |
return collignonRaw.invert(x / kx, y); | |
}; | |
var collignon$1 = function(faceProjection) { | |
faceProjection = faceProjection || function(face) { | |
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face}); | |
return d3Geo.geoProjection(collignonK).translate([0, 0]).scale(1).rotate(c[1] > 0 ? [-c[0], 0] : [180 - c[0], 180]); | |
}; | |
var faces = octahedron$1.map(function(face) { | |
return {face: face, project: faceProjection(face)}; | |
}); | |
[-1, 0, 0, 1, 0, 1, 4, 5].forEach(function(d, i) { | |
var node = faces[d]; | |
node && (node.children || (node.children = [])).push(faces[i]); | |
}); | |
return polyhedral(faces[0], function(lambda, phi) { | |
return faces[lambda < -pi / 2 ? phi < 0 ? 6 : 4 | |
: lambda < 0 ? phi < 0 ? 2 : 0 | |
: lambda < pi / 2 ? phi < 0 ? 3 : 1 | |
: phi < 0 ? 7 : 5]; | |
}) | |
.scale(121.906) | |
.center([0, 48.5904]); | |
}; | |
var waterman = function(faceProjection) { | |
faceProjection = faceProjection || function(face) { | |
var c = face.length === 6 ? d3Geo.geoCentroid({type: "MultiPoint", coordinates: face}) : face[0]; | |
return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]); | |
}; | |
var w5 = octahedron$1.map(function(face) { | |
var xyz = face.map(cartesian), | |
n = xyz.length, | |
a = xyz[n - 1], | |
b, | |
hexagon = []; | |
for (var i = 0; i < n; ++i) { | |
b = xyz[i]; | |
hexagon.push(spherical([ | |
a[0] * 0.9486832980505138 + b[0] * 0.31622776601683794, | |
a[1] * 0.9486832980505138 + b[1] * 0.31622776601683794, | |
a[2] * 0.9486832980505138 + b[2] * 0.31622776601683794 | |
]), spherical([ | |
b[0] * 0.9486832980505138 + a[0] * 0.31622776601683794, | |
b[1] * 0.9486832980505138 + a[1] * 0.31622776601683794, | |
b[2] * 0.9486832980505138 + a[2] * 0.31622776601683794 | |
])); | |
a = b; | |
} | |
return hexagon; | |
}); | |
var cornerNormals = []; | |
var parents = [-1, 0, 0, 1, 0, 1, 4, 5]; | |
w5.forEach(function(hexagon, j) { | |
var face = octahedron$1[j], | |
n = face.length, | |
normals = cornerNormals[j] = []; | |
for (var i = 0; i < n; ++i) { | |
w5.push([ | |
face[i], | |
hexagon[(i * 2 + 2) % (2 * n)], | |
hexagon[(i * 2 + 1) % (2 * n)] | |
]); | |
parents.push(j); | |
normals.push(cross( | |
cartesian(hexagon[(i * 2 + 2) % (2 * n)]), | |
cartesian(hexagon[(i * 2 + 1) % (2 * n)]) | |
)); | |
} | |
}); | |
var faces = w5.map(function(face) { | |
return { | |
project: faceProjection(face), | |
face: face | |
}; | |
}); | |
parents.forEach(function(d, i) { | |
var parent = faces[d]; | |
parent && (parent.children || (parent.children = [])).push(faces[i]); | |
}); | |
function face(lambda, phi) { | |
var cosphi = cos(phi), | |
p = [cosphi * cos(lambda), cosphi * sin(lambda), sin(phi)]; | |
var hexagon = lambda < -pi / 2 ? phi < 0 ? 6 : 4 | |
: lambda < 0 ? phi < 0 ? 2 : 0 | |
: lambda < pi / 2 ? phi < 0 ? 3 : 1 | |
: phi < 0 ? 7 : 5; | |
var n = cornerNormals[hexagon]; | |
return faces[dot(n[0], p) < 0 ? 8 + 3 * hexagon | |
: dot(n[1], p) < 0 ? 8 + 3 * hexagon + 1 | |
: dot(n[2], p) < 0 ? 8 + 3 * hexagon + 2 | |
: hexagon]; | |
} | |
return polyhedral(faces[0], face) | |
.scale(110.625) | |
.center([0,45]); | |
}; | |
function dot(a, b) { | |
for (var i = 0, n = a.length, s = 0; i < n; ++i) s += a[i] * b[i]; | |
return s; | |
} | |
function cross(a, b) { | |
return [ | |
a[1] * b[2] - a[2] * b[1], | |
a[2] * b[0] - a[0] * b[2], | |
a[0] * b[1] - a[1] * b[0] | |
]; | |
} | |
// Converts 3D Cartesian to spherical coordinates (degrees). | |
function spherical(cartesian) { | |
return [ | |
atan2(cartesian[1], cartesian[0]) * degrees, | |
asin(max(-1, min(1, cartesian[2]))) * degrees | |
]; | |
} | |
// Converts spherical coordinates (degrees) to 3D Cartesian. | |
function cartesian(coordinates) { | |
var lambda = coordinates[0] * radians, | |
phi = coordinates[1] * radians, | |
cosphi = cos(phi); | |
return [ | |
cosphi * cos(lambda), | |
cosphi * sin(lambda), | |
sin(phi) | |
]; | |
} | |
var noop = function() {}; | |
var clockwise = function(ring) { | |
if ((n = ring.length) < 4) return false; | |
var i = 0, | |
n, | |
area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1]; | |
while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1]; | |
return area <= 0; | |
}; | |
var contains = function(ring, point) { | |
var x = point[0], | |
y = point[1], | |
contains = false; | |
for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) { | |
var pi = ring[i], xi = pi[0], yi = pi[1], | |
pj = ring[j], xj = pj[0], yj = pj[1]; | |
if (((yi > y) ^ (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi)) contains = !contains; | |
} | |
return contains; | |
}; | |
var index = function(object, projection) { | |
var stream = projection.stream, project; | |
if (!stream) throw new Error("invalid projection"); | |
switch (object && object.type) { | |
case "Feature": project = projectFeature; break; | |
case "FeatureCollection": project = projectFeatureCollection; break; | |
default: project = projectGeometry; break; | |
} | |
return project(object, stream); | |
}; | |
function projectFeatureCollection(o, stream) { | |
return { | |
type: "FeatureCollection", | |
features: o.features.map(function(f) { | |
return projectFeature(f, stream); | |
}) | |
}; | |
} | |
function projectFeature(o, stream) { | |
return { | |
type: "Feature", | |
id: o.id, | |
properties: o.properties, | |
geometry: projectGeometry(o.geometry, stream) | |
}; | |
} | |
function projectGeometryCollection(o, stream) { | |
return { | |
type: "GeometryCollection", | |
geometries: o.geometries.map(function(o) { | |
return projectGeometry(o, stream); | |
}) | |
}; | |
} | |
function projectGeometry(o, stream) { | |
if (!o) return null; | |
if (o.type === "GeometryCollection") return projectGeometryCollection(o, stream); | |
var sink; | |
switch (o.type) { | |
case "Point": sink = sinkPoint; break; | |
case "MultiPoint": sink = sinkPoint; break; | |
case "LineString": sink = sinkLine; break; | |
case "MultiLineString": sink = sinkLine; break; | |
case "Polygon": sink = sinkPolygon; break; | |
case "MultiPolygon": sink = sinkPolygon; break; | |
case "Sphere": sink = sinkPolygon; break; | |
default: return null; | |
} | |
d3Geo.geoStream(o, stream(sink)); | |
return sink.result(); | |
} | |
var points = []; | |
var lines = []; | |
var sinkPoint = { | |
point: function(x, y) { | |
points.push([x, y]); | |
}, | |
result: function() { | |
var result = !points.length ? null | |
: points.length < 2 ? {type: "Point", coordinates: points[0]} | |
: {type: "MultiPoint", coordinates: points}; | |
points = []; | |
return result; | |
} | |
}; | |
var sinkLine = { | |
lineStart: noop, | |
point: function(x, y) { | |
points.push([x, y]); | |
}, | |
lineEnd: function() { | |
if (points.length) lines.push(points), points = []; | |
}, | |
result: function() { | |
var result = !lines.length ? null | |
: lines.length < 2 ? {type: "LineString", coordinates: lines[0]} | |
: {type: "MultiLineString", coordinates: lines}; | |
lines = []; | |
return result; | |
} | |
}; | |
var sinkPolygon = { | |
polygonStart: noop, | |
lineStart: noop, | |
point: function(x, y) { | |
points.push([x, y]); | |
}, | |
lineEnd: function() { | |
var n = points.length; | |
if (n) { | |
do points.push(points[0].slice()); while (++n < 4); | |
lines.push(points), points = []; | |
} | |
}, | |
polygonEnd: noop, | |
result: function() { | |
if (!lines.length) return null; | |
var polygons = [], | |
holes = []; | |
// https://github.com/d3/d3/issues/1558 | |
lines.forEach(function(ring) { | |
if (clockwise(ring)) polygons.push([ring]); | |
else holes.push(ring); | |
}); | |
holes.forEach(function(hole) { | |
var point = hole[0]; | |
polygons.some(function(polygon) { | |
if (contains(polygon[0], point)) { | |
polygon.push(hole); | |
return true; | |
} | |
}) || polygons.push([hole]); | |
}); | |
lines = []; | |
return !polygons.length ? null | |
: polygons.length > 1 ? {type: "MultiPolygon", coordinates: polygons} | |
: {type: "Polygon", coordinates: polygons[0]}; | |
} | |
}; | |
var quincuncial = function(project) { | |
var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0]; | |
function projectQuincuncial(lambda, phi) { | |
var t = abs(lambda) < halfPi, | |
p = project(t ? lambda : lambda > 0 ? lambda - pi : lambda + pi, phi), | |
x = (p[0] - p[1]) * sqrt1_2, | |
y = (p[0] + p[1]) * sqrt1_2; | |
if (t) return [x, y]; | |
var d = dx * sqrt1_2, | |
s = x > 0 ^ y > 0 ? -1 : 1; | |
return [s * x - sign(y) * d, s * y - sign(x) * d]; | |
} | |
if (project.invert) projectQuincuncial.invert = function(x0, y0) { | |
var x = (x0 + y0) * sqrt1_2, | |
y = (y0 - x0) * sqrt1_2, | |
t = abs(x) < 0.5 * dx && abs(y) < 0.5 * dx; | |
if (!t) { | |
var d = dx * sqrt1_2, | |
s = x > 0 ^ y > 0 ? -1 : 1, | |
x1 = -s * (x0 + (y > 0 ? 1 : -1) * d), | |
y1 = -s * (y0 + (x > 0 ? 1 : -1) * d); | |
x = (-x1 - y1) * sqrt1_2; | |
y = (x1 - y1) * sqrt1_2; | |
} | |
var p = project.invert(x, y); | |
if (!t) p[0] += x > 0 ? pi : -pi; | |
return p; | |
}; | |
return d3Geo.geoProjection(projectQuincuncial) | |
.rotate([-90, -90, 45]) | |
.clipAngle(180 - 1e-3); | |
}; | |
var gringorten$1 = function() { | |
return quincuncial(gringortenRaw) | |
.scale(176.423); | |
}; | |
var peirce = function() { | |
return quincuncial(guyouRaw) | |
.scale(111.48); | |
}; | |
var quantize = function(o, digits) { | |
if (!(0 <= (digits = +digits) && digits <= 20)) throw new Error("invalid digits"); | |
function quantizePoint(coordinates) { | |
coordinates[0] = +coordinates[0].toFixed(digits); | |
coordinates[1] = +coordinates[1].toFixed(digits); | |
} | |
function quantizePoints(coordinates) { | |
coordinates.forEach(quantizePoint); | |
} | |
function quantizePolygon(coordinates) { | |
coordinates.forEach(quantizePoints); | |
} | |
function quantizeGeometry(o) { | |
if (o) switch (o.type) { | |
case "GeometryCollection": o.geometries.forEach(quantizeGeometry); break; | |
case "Point": quantizePoint(o.coordinates); break; | |
case "MultiPoint": case "LineString": quantizePoints(o.coordinates); break; | |
case "MultiLineString": case "Polygon": quantizePolygon(o.coordinates); break; | |
case "MultiPolygon": o.coordinates.forEach(quantizePolygon); break; | |
default: return; | |
} | |
} | |
function quantizeFeature(o) { | |
quantizeGeometry(o.geometry); | |
} | |
if (o) switch (o.type) { | |
case "Feature": quantizeFeature(o); break; | |
case "FeatureCollection": o.features.forEach(quantizeFeature); break; | |
default: quantizeGeometry(o); break; | |
} | |
return o; | |
}; | |
function rectangularPolyconicRaw(phi0) { | |
var sinPhi0 = sin(phi0); | |
function forward(lambda, phi) { | |
var A = sinPhi0 ? tan(lambda * sinPhi0 / 2) / sinPhi0 : lambda / 2; | |
if (!phi) return [2 * A, -phi0]; | |
var E = 2 * atan(A * sin(phi)), | |
cotPhi = 1 / tan(phi); | |
return [ | |
sin(E) * cotPhi, | |
phi + (1 - cos(E)) * cotPhi - phi0 | |
]; | |
} | |
// TODO return null for points outside outline. | |
forward.invert = function(x, y) { | |
if (abs(y += phi0) < epsilon) return [sinPhi0 ? 2 * atan(sinPhi0 * x / 2) / sinPhi0 : x, 0]; | |
var k = x * x + y * y, | |
phi = 0, | |
i = 10, delta; | |
do { | |
var tanPhi = tan(phi), | |
secPhi = 1 / cos(phi), | |
j = k - 2 * y * phi + phi * phi; | |
phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi); | |
} while (abs(delta) > epsilon && --i > 0); | |
var E = x * (tanPhi = tan(phi)), | |
A = tan(abs(y) < abs(phi + 1 / tanPhi) ? asin(E) * 0.5 : acos(E) * 0.5 + pi / 4) / sin(phi); | |
return [ | |
sinPhi0 ? 2 * atan(sinPhi0 * A) / sinPhi0 : 2 * A, | |
phi | |
]; | |
}; | |
return forward; | |
} | |
var rectangularPolyconic = function() { | |
return parallel1(rectangularPolyconicRaw) | |
.scale(131.215); | |
}; | |
var K = [ | |
[0.9986, -0.062], | |
[1.0000, 0.0000], | |
[0.9986, 0.0620], | |
[0.9954, 0.1240], | |
[0.9900, 0.1860], | |
[0.9822, 0.2480], | |
[0.9730, 0.3100], | |
[0.9600, 0.3720], | |
[0.9427, 0.4340], | |
[0.9216, 0.4958], | |
[0.8962, 0.5571], | |
[0.8679, 0.6176], | |
[0.8350, 0.6769], | |
[0.7986, 0.7346], | |
[0.7597, 0.7903], | |
[0.7186, 0.8435], | |
[0.6732, 0.8936], | |
[0.6213, 0.9394], | |
[0.5722, 0.9761], | |
[0.5322, 1.0000] | |
]; | |
K.forEach(function(d) { | |
d[1] *= 1.0144; | |
}); | |
function robinsonRaw(lambda, phi) { | |
var i = min(18, abs(phi) * 36 / pi), | |
i0 = floor(i), | |
di = i - i0, | |
ax = (k = K[i0])[0], | |
ay = k[1], | |
bx = (k = K[++i0])[0], | |
by = k[1], | |
cx = (k = K[min(19, ++i0)])[0], | |
cy = k[1], | |
k; | |
return [ | |
lambda * (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2), | |
(phi > 0 ? halfPi : -halfPi) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2) | |
]; | |
} | |
robinsonRaw.invert = function(x, y) { | |
var yy = y / halfPi, | |
phi = yy * 90, | |
i = min(18, abs(phi / 5)), | |
i0 = max(0, floor(i)); | |
do { | |
var ay = K[i0][1], | |
by = K[i0 + 1][1], | |
cy = K[min(19, i0 + 2)][1], | |
u = cy - ay, | |
v = cy - 2 * by + ay, | |
t = 2 * (abs(yy) - by) / u, | |
c = v / u, | |
di = t * (1 - c * t * (1 - 2 * c * t)); | |
if (di >= 0 || i0 === 1) { | |
phi = (y >= 0 ? 5 : -5) * (di + i); | |
var j = 50, delta; | |
do { | |
i = min(18, abs(phi) / 5); | |
i0 = floor(i); | |
di = i - i0; | |
ay = K[i0][1]; | |
by = K[i0 + 1][1]; | |
cy = K[min(19, i0 + 2)][1]; | |
phi -= (delta = (y >= 0 ? halfPi : -halfPi) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2) - y) * degrees; | |
} while (abs(delta) > epsilon2 && --j > 0); | |
break; | |
} | |
} while (--i0 >= 0); | |
var ax = K[i0][0], | |
bx = K[i0 + 1][0], | |
cx = K[min(19, i0 + 2)][0]; | |
return [ | |
x / (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2), | |
phi * radians | |
]; | |
}; | |
var robinson = function() { | |
return d3Geo.geoProjection(robinsonRaw) | |
.scale(152.63); | |
}; | |
function satelliteVerticalRaw(P) { | |
function forward(lambda, phi) { | |
var cosPhi = cos(phi), | |
k = (P - 1) / (P - cosPhi * cos(lambda)); | |
return [ | |
k * cosPhi * sin(lambda), | |
k * sin(phi) | |
]; | |
} | |
forward.invert = function(x, y) { | |
var rho2 = x * x + y * y, | |
rho = sqrt(rho2), | |
sinc = (P - sqrt(1 - rho2 * (P + 1) / (P - 1))) / ((P - 1) / rho + rho / (P - 1)); | |
return [ | |
atan2(x * sinc, rho * sqrt(1 - sinc * sinc)), | |
rho ? asin(y * sinc / rho) : 0 | |
]; | |
}; | |
return forward; | |
} | |
function satelliteRaw(P, omega) { | |
var vertical = satelliteVerticalRaw(P); | |
if (!omega) return vertical; | |
var cosOmega = cos(omega), | |
sinOmega = sin(omega); | |
function forward(lambda, phi) { | |
var coordinates = vertical(lambda, phi), | |
y = coordinates[1], | |
A = y * sinOmega / (P - 1) + cosOmega; | |
return [ | |
coordinates[0] * cosOmega / A, | |
y / A | |
]; | |
} | |
forward.invert = function(x, y) { | |
var k = (P - 1) / (P - 1 - y * sinOmega); | |
return vertical.invert(k * x, k * y * cosOmega); | |
}; | |
return forward; | |
} | |
var satellite = function() { | |
var distance = 2, | |
omega = 0, | |
m = d3Geo.geoProjectionMutator(satelliteRaw), | |
p = m(distance, omega); | |
// As a multiple of radius. | |
p.distance = function(_) { | |
if (!arguments.length) return distance; | |
return m(distance = +_, omega); | |
}; | |
p.tilt = function(_) { | |
if (!arguments.length) return omega * degrees; | |
return m(distance, omega = _ * radians); | |
}; | |
return p | |
.scale(432.147) | |
.clipAngle(acos(1 / distance) * degrees - 1e-6); | |
}; | |
var epsilon$1 = 1e-4; | |
var epsilonInverse = 1e4; | |
var x0 = -180; | |
var x0e = x0 + epsilon$1; | |
var x1 = 180; | |
var x1e = x1 - epsilon$1; | |
var y0 = -90; | |
var y0e = y0 + epsilon$1; | |
var y1 = 90; | |
var y1e = y1 - epsilon$1; | |
function quantize$1(x) { | |
return Math.floor(x * epsilonInverse) / epsilonInverse; | |
} | |
function normalizePoint(y) { | |
return y === y0 || y === y1 | |
? [0, y] // pole | |
: [x0, quantize$1(y)]; // antimeridian | |
} | |
function clampPoint(p) { | |
if (p[0] <= x0e) p[0] = x0; | |
else if (p[0] >= x1e) p[0] = x1; | |
if (p[1] <= y0e) p[1] = y0; | |
else if (p[1] >= y1e) p[1] = y1; | |
} | |
function clampPoints(points) { | |
points.forEach(clampPoint); | |
} | |
// For each ring, detect where it crosses the antimeridian or pole. | |
function extractFragments(polygon, fragments) { | |
for (var j = 0, m = polygon.length; j < m; ++j) { | |
var ring = polygon[j]; | |
ring.polygon = polygon; | |
// By default, assume that this ring doesn’t need any stitching. | |
fragments.push(ring); | |
for (var i = 0, n = ring.length; i < n; ++i) { | |
var point = ring[i], | |
x = point[0], | |
y = point[1]; | |
// If this is an antimeridian or polar point… | |
if (x <= x0e || x >= x1e || y <= y0e || y >= y1e) { | |
clampPoint(point); | |
// Advance through any antimeridian or polar points… | |
for (var k = i + 1; k < n; ++k) { | |
var pointk = ring[k], | |
xk = pointk[0], | |
yk = pointk[1]; | |
if (xk > x0e && xk < x1e && yk > y0e && yk < y1e) break; | |
} | |
// If this was just a single antimeridian or polar point, | |
// we don’t need to cut this ring into a fragment; | |
// we can just leave it as-is. | |
if (k === i + 1) continue; | |
// Otherwise, if this is not the first point in the ring, | |
// cut the current fragment so that it ends at the current point. | |
// The current point is also normalized for later joining. | |
if (i) { | |
var fragmentBefore = ring.slice(0, i + 1); | |
fragmentBefore.polygon = polygon; | |
fragmentBefore[fragmentBefore.length - 1] = normalizePoint(y); | |
fragments[fragments.length - 1] = fragmentBefore; | |
} | |
// If the ring started with an antimeridian fragment, | |
// we can ignore that fragment entirely. | |
else fragments.pop(); | |
// If the remainder of the ring is an antimeridian fragment, | |
// move on to the next ring. | |
if (k >= n) break; | |
// Otherwise, add the remaining ring fragment and continue. | |
fragments.push(ring = ring.slice(k - 1)); | |
ring[0] = normalizePoint(ring[0][1]); | |
ring.polygon = polygon; | |
i = -1; | |
n = ring.length; | |
} | |
} | |
} | |
polygon.length = 0; | |
} | |
// Now stitch the fragments back together into rings. | |
// TODO remove empty polygons. | |
function stitchFragments(fragments) { | |
var i, n = fragments.length; | |
// To connect the fragments start-to-end, create a simple index by end. | |
var fragmentByStart = {}, | |
fragmentByEnd = {}, | |
fragment, | |
start, | |
startFragment, | |
end, | |
endFragment; | |
// For each fragment… | |
for (i = 0; i < n; ++i) { | |
fragment = fragments[i]; | |
start = fragment[0]; | |
end = fragment[fragment.length - 1]; | |
// If this fragment is closed, add it as a standalone ring. | |
if (start[0] === end[0] && start[1] === end[1]) { | |
fragment.polygon.push(fragment); | |
fragments[i] = null; | |
continue; | |
} | |
fragment.index = i; | |
fragmentByStart[start] = fragmentByEnd[end] = fragment; | |
} | |
// For each open fragment… | |
for (i = 0; i < n; ++i) { | |
fragment = fragments[i]; | |
if (fragment) { | |
start = fragment[0]; | |
end = fragment[fragment.length - 1]; | |
startFragment = fragmentByEnd[start]; | |
endFragment = fragmentByStart[end]; | |
delete fragmentByStart[start]; | |
delete fragmentByEnd[end]; | |
// If this fragment is closed, add it as a standalone ring. | |
if (start[0] === end[0] && start[1] === end[1]) { | |
fragment.polygon.push(fragment); | |
continue; | |
} | |
if (startFragment) { | |
delete fragmentByEnd[start]; | |
delete fragmentByStart[startFragment[0]]; | |
startFragment.pop(); // drop the shared coordinate | |
fragments[startFragment.index] = null; | |
fragment = startFragment.concat(fragment); | |
fragment.polygon = startFragment.polygon; | |
if (startFragment === endFragment) { | |
// Connect both ends to this single fragment to create a ring. | |
fragment.polygon.push(fragment); | |
} else { | |
fragment.index = n++; | |
fragments.push(fragmentByStart[fragment[0]] = fragmentByEnd[fragment[fragment.length - 1]] = fragment); | |
} | |
} else if (endFragment) { | |
delete fragmentByStart[end]; | |
delete fragmentByEnd[endFragment[endFragment.length - 1]]; | |
fragment.pop(); // drop the shared coordinate | |
fragment = fragment.concat(endFragment); | |
fragment.polygon = endFragment.polygon; | |
fragment.index = n++; | |
fragments[endFragment.index] = null; | |
fragments.push(fragmentByStart[fragment[0]] = fragmentByEnd[fragment[fragment.length - 1]] = fragment); | |
} else { | |
fragment.push(fragment[0]); // close ring | |
fragment.polygon.push(fragment); | |
} | |
} | |
} | |
} | |
function stitchFeature(o) { | |
stitchGeometry(o.geometry); | |
} | |
function stitchGeometry(o) { | |
if (!o) return; | |
var fragments, i, n; | |
switch (o.type) { | |
case "GeometryCollection": { | |
o.geometries.forEach(stitchGeometry); | |
return; | |
} | |
case "Point": { | |
clampPoint(o.coordinates); | |
break; | |
} | |
case "MultiPoint": | |
case "LineString": { | |
clampPoints(o.coordinates); | |
break; | |
} | |
case "MultiLineString": { | |
o.coordinates.forEach(clampPoints); | |
break; | |
} | |
case "Polygon": { | |
extractFragments(o.coordinates, fragments = []); | |
break; | |
} | |
case "MultiPolygon": { | |
fragments = [], i = -1, n = o.coordinates.length; | |
while (++i < n) extractFragments(o.coordinates[i], fragments); | |
break; | |
} | |
default: return; | |
} | |
stitchFragments(fragments); | |
} | |
var stitch = function(o) { | |
if (o) switch (o.type) { | |
case "Feature": stitchFeature(o); break; | |
case "FeatureCollection": o.features.forEach(stitchFeature); break; | |
default: stitchGeometry(o); break; | |
} | |
return o; | |
}; | |
function timesRaw(lambda, phi) { | |
var t = tan(phi / 2), | |
s = sin(quarterPi * t); | |
return [ | |
lambda * (0.74482 - 0.34588 * s * s), | |
1.70711 * t | |
]; | |
} | |
timesRaw.invert = function(x, y) { | |
var t = y / 1.70711, | |
s = sin(quarterPi * t); | |
return [ | |
x / (0.74482 - 0.34588 * s * s), | |
2 * atan(t) | |
]; | |
}; | |
var times = function() { | |
return d3Geo.geoProjection(timesRaw) | |
.scale(146.153); | |
}; | |
// Compute the origin as the midpoint of the two reference points. | |
// Rotate one of the reference points by the origin. | |
// Apply the spherical law of sines to compute gamma rotation. | |
var twoPoint = function(raw, p0, p1) { | |
var i = d3Geo.geoInterpolate(p0, p1), | |
o = i(0.5), | |
a = d3Geo.geoRotation([-o[0], -o[1]])(p0), | |
b = i.distance / 2, | |
y = -asin(sin(a[1] * radians) / sin(b)), | |
R = [-o[0], -o[1], -(a[0] > 0 ? pi - y : y) * degrees], | |
p = d3Geo.geoProjection(raw(b)).rotate(R), | |
r = d3Geo.geoRotation(R), | |
center = p.center; | |
delete p.rotate; | |
p.center = function(_) { | |
return arguments.length ? center(r(_)) : r.invert(center()); | |
}; | |
return p | |
.clipAngle(90); | |
}; | |
function twoPointAzimuthalRaw(d) { | |
var cosd = cos(d); | |
function forward(lambda, phi) { | |
var coordinates = d3Geo.geoGnomonicRaw(lambda, phi); | |
coordinates[0] *= cosd; | |
return coordinates; | |
} | |
forward.invert = function(x, y) { | |
return d3Geo.geoGnomonicRaw.invert(x / cosd, y); | |
}; | |
return forward; | |
} | |
function twoPointAzimuthalUsa() { | |
return twoPointAzimuthal([-158, 21.5], [-77, 39]) | |
.clipAngle(60) | |
.scale(400); | |
} | |
function twoPointAzimuthal(p0, p1) { | |
return twoPoint(twoPointAzimuthalRaw, p0, p1); | |
} | |
// TODO clip to ellipse | |
function twoPointEquidistantRaw(z0) { | |
if (!(z0 *= 2)) return d3Geo.geoAzimuthalEquidistantRaw; | |
var lambdaa = -z0 / 2, | |
lambdab = -lambdaa, | |
z02 = z0 * z0, | |
tanLambda0 = tan(lambdab), | |
S = 0.5 / sin(lambdab); | |
function forward(lambda, phi) { | |
var za = acos(cos(phi) * cos(lambda - lambdaa)), | |
zb = acos(cos(phi) * cos(lambda - lambdab)), | |
ys = phi < 0 ? -1 : 1; | |
za *= za, zb *= zb; | |
return [ | |
(za - zb) / (2 * z0), | |
ys * sqrt(4 * z02 * zb - (z02 - za + zb) * (z02 - za + zb)) / (2 * z0) | |
]; | |
} | |
forward.invert = function(x, y) { | |
var y2 = y * y, | |
cosza = cos(sqrt(y2 + (t = x + lambdaa) * t)), | |
coszb = cos(sqrt(y2 + (t = x + lambdab) * t)), | |
t, | |
d; | |
return [ | |
atan2(d = cosza - coszb, t = (cosza + coszb) * tanLambda0), | |
(y < 0 ? -1 : 1) * acos(sqrt(t * t + d * d) * S) | |
]; | |
}; | |
return forward; | |
} | |
function twoPointEquidistantUsa() { | |
return twoPointEquidistant([-158, 21.5], [-77, 39]) | |
.clipAngle(130) | |
.scale(122.571); | |
} | |
function twoPointEquidistant(p0, p1) { | |
return twoPoint(twoPointEquidistantRaw, p0, p1); | |
} | |
function vanDerGrintenRaw(lambda, phi) { | |
if (abs(phi) < epsilon) return [lambda, 0]; | |
var sinTheta = abs(phi / halfPi), | |
theta = asin(sinTheta); | |
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, sign(phi) * pi * tan(theta / 2)]; | |
var cosTheta = cos(theta), | |
A = abs(pi / lambda - lambda / pi) / 2, | |
A2 = A * A, | |
G = cosTheta / (sinTheta + cosTheta - 1), | |
P = G * (2 / sinTheta - 1), | |
P2 = P * P, | |
P2_A2 = P2 + A2, | |
G_P2 = G - P2, | |
Q = A2 + G; | |
return [ | |
sign(lambda) * pi * (A * G_P2 + sqrt(A2 * G_P2 * G_P2 - P2_A2 * (G * G - P2))) / P2_A2, | |
sign(phi) * pi * (P * Q - A * sqrt((A2 + 1) * P2_A2 - Q * Q)) / P2_A2 | |
]; | |
} | |
vanDerGrintenRaw.invert = function(x, y) { | |
if (abs(y) < epsilon) return [x, 0]; | |
if (abs(x) < epsilon) return [0, halfPi * sin(2 * atan(y / pi))]; | |
var x2 = (x /= pi) * x, | |
y2 = (y /= pi) * y, | |
x2_y2 = x2 + y2, | |
z = x2_y2 * x2_y2, | |
c1 = -abs(y) * (1 + x2_y2), | |
c2 = c1 - 2 * y2 + x2, | |
c3 = -2 * c1 + 1 + 2 * y2 + z, | |
d = y2 / c3 + (2 * c2 * c2 * c2 / (c3 * c3 * c3) - 9 * c1 * c2 / (c3 * c3)) / 27, | |
a1 = (c1 - c2 * c2 / (3 * c3)) / c3, | |
m1 = 2 * sqrt(-a1 / 3), | |
theta1 = acos(3 * d / (a1 * m1)) / 3; | |
return [ | |
pi * (x2_y2 - 1 + sqrt(1 + 2 * (x2 - y2) + z)) / (2 * x), | |
sign(y) * pi * (-m1 * cos(theta1 + pi / 3) - c2 / (3 * c3)) | |
]; | |
}; | |
var vanDerGrinten = function() { | |
return d3Geo.geoProjection(vanDerGrintenRaw) | |
.scale(79.4183); | |
}; | |
function vanDerGrinten2Raw(lambda, phi) { | |
if (abs(phi) < epsilon) return [lambda, 0]; | |
var sinTheta = abs(phi / halfPi), | |
theta = asin(sinTheta); | |
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, sign(phi) * pi * tan(theta / 2)]; | |
var cosTheta = cos(theta), | |
A = abs(pi / lambda - lambda / pi) / 2, | |
A2 = A * A, | |
x1 = cosTheta * (sqrt(1 + A2) - A * cosTheta) / (1 + A2 * sinTheta * sinTheta); | |
return [ | |
sign(lambda) * pi * x1, | |
sign(phi) * pi * sqrt(1 - x1 * (2 * A + x1)) | |
]; | |
} | |
vanDerGrinten2Raw.invert = function(x, y) { | |
if (!x) return [0, halfPi * sin(2 * atan(y / pi))]; | |
var x1 = abs(x / pi), | |
A = (1 - x1 * x1 - (y /= pi) * y) / (2 * x1), | |
A2 = A * A, | |
B = sqrt(A2 + 1); | |
return [ | |
sign(x) * pi * (B - A), | |
sign(y) * halfPi * sin(2 * atan2(sqrt((1 - 2 * A * x1) * (A + B) - x1), sqrt(B + A + x1))) | |
]; | |
}; | |
var vanDerGrinten2 = function() { | |
return d3Geo.geoProjection(vanDerGrinten2Raw) | |
.scale(79.4183); | |
}; | |
function vanDerGrinten3Raw(lambda, phi) { | |
if (abs(phi) < epsilon) return [lambda, 0]; | |
var sinTheta = phi / halfPi, | |
theta = asin(sinTheta); | |
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, pi * tan(theta / 2)]; | |
var A = (pi / lambda - lambda / pi) / 2, | |
y1 = sinTheta / (1 + cos(theta)); | |
return [ | |
pi * (sign(lambda) * sqrt(A * A + 1 - y1 * y1) - A), | |
pi * y1 | |
]; | |
} | |
vanDerGrinten3Raw.invert = function(x, y) { | |
if (!y) return [x, 0]; | |
var y1 = y / pi, | |
A = (pi * pi * (1 - y1 * y1) - x * x) / (2 * pi * x); | |
return [ | |
x ? pi * (sign(x) * sqrt(A * A + 1) - A) : 0, | |
halfPi * sin(2 * atan(y1)) | |
]; | |
}; | |
var vanDerGrinten3 = function() { | |
return d3Geo.geoProjection(vanDerGrinten3Raw) | |
.scale(79.4183); | |
}; | |
function vanDerGrinten4Raw(lambda, phi) { | |
if (!phi) return [lambda, 0]; | |
var phi0 = abs(phi); | |
if (!lambda || phi0 === halfPi) return [0, phi]; | |
var B = phi0 / halfPi, | |
B2 = B * B, | |
C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)), | |
C2 = C * C, | |
BC = B * C, | |
B_C2 = B2 + C2 + 2 * BC, | |
B_3C = B + 3 * C, | |
lambda0 = lambda / halfPi, | |
lambda1 = lambda0 + 1 / lambda0, | |
D = sign(abs(lambda) - halfPi) * sqrt(lambda1 * lambda1 - 4), | |
D2 = D * D, | |
F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + 12 * BC * C2 + 4 * C2 * C2), | |
x1 = (D * (B_C2 + C2 - 1) + 2 * sqrt(F)) / (4 * B_C2 + D2); | |
return [ | |
sign(lambda) * halfPi * x1, | |
sign(phi) * halfPi * sqrt(1 + D * abs(x1) - x1 * x1) | |
]; | |
} | |
vanDerGrinten4Raw.invert = function(x, y) { | |
var delta; | |
if (!x || !y) return [x, y]; | |
y /= pi; | |
var x1 = sign(x) * x / halfPi, | |
D = (x1 * x1 - 1 + 4 * y * y) / abs(x1), | |
D2 = D * D, | |
B = 2 * y, | |
i = 50; | |
do { | |
var B2 = B * B, | |
C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)), | |
C_ = (3 * B - B2 * B - 10) / (2 * B2 * B), | |
C2 = C * C, | |
BC = B * C, | |
B_C = B + C, | |
B_C2 = B_C * B_C, | |
B_3C = B + 3 * C, | |
F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + C2 * (12 * BC + 4 * C2)), | |
F_ = -2 * B_C * (4 * BC * C2 + (1 - 4 * B2 + 3 * B2 * B2) * (1 + C_) + C2 * (-6 + 14 * B2 - D2 + (-8 + 8 * B2 - 2 * D2) * C_) + BC * (-8 + 12 * B2 + (-10 + 10 * B2 - D2) * C_)), | |
sqrtF = sqrt(F), | |
f = D * (B_C2 + C2 - 1) + 2 * sqrtF - x1 * (4 * B_C2 + D2), | |
f_ = D * (2 * C * C_ + 2 * B_C * (1 + C_)) + F_ / sqrtF - 8 * B_C * (D * (-1 + C2 + B_C2) + 2 * sqrtF) * (1 + C_) / (D2 + 4 * B_C2); | |
B -= delta = f / f_; | |
} while (delta > epsilon && --i > 0); | |
return [ | |
sign(x) * (sqrt(D * D + 4) + D) * pi / 4, | |
halfPi * B | |
]; | |
}; | |
var vanDerGrinten4 = function() { | |
return d3Geo.geoProjection(vanDerGrinten4Raw) | |
.scale(127.16); | |
}; | |
var A = 4 * pi + 3 * sqrt(3); | |
var B = 2 * sqrt(2 * pi * sqrt(3) / A); | |
var wagner4Raw = mollweideBromleyRaw(B * sqrt(3) / pi, B, A / 6); | |
var wagner4 = function() { | |
return d3Geo.geoProjection(wagner4Raw) | |
.scale(176.84); | |
}; | |
function wagner6Raw(lambda, phi) { | |
return [lambda * sqrt(1 - 3 * phi * phi / (pi * pi)), phi]; | |
} | |
wagner6Raw.invert = function(x, y) { | |
return [x / sqrt(1 - 3 * y * y / (pi * pi)), y]; | |
}; | |
var wagner6 = function() { | |
return d3Geo.geoProjection(wagner6Raw) | |
.scale(152.63); | |
}; | |
function wagner7Raw(lambda, phi) { | |
var s = 0.90631 * sin(phi), | |
c0 = sqrt(1 - s * s), | |
c1 = sqrt(2 / (1 + c0 * cos(lambda /= 3))); | |
return [ | |
2.66723 * c0 * c1 * sin(lambda), | |
1.24104 * s * c1 | |
]; | |
} | |
wagner7Raw.invert = function(x, y) { | |
var t1 = x / 2.66723, | |
t2 = y / 1.24104, | |
p = sqrt(t1 * t1 + t2 * t2), | |
c = 2 * asin(p / 2); | |
return [ | |
3 * atan2(x * tan(c), 2.66723 * p), | |
p && asin(y * sin(c) / (1.24104 * 0.90631 * p)) | |
]; | |
}; | |
var wagner7 = function() { | |
return d3Geo.geoProjection(wagner7Raw) | |
.scale(172.632); | |
}; | |
function wiechelRaw(lambda, phi) { | |
var cosPhi = cos(phi), | |
sinPhi = cos(lambda) * cosPhi, | |
sin1_Phi = 1 - sinPhi, | |
cosLambda = cos(lambda = atan2(sin(lambda) * cosPhi, -sin(phi))), | |
sinLambda = sin(lambda); | |
cosPhi = sqrt(1 - sinPhi * sinPhi); | |
return [ | |
sinLambda * cosPhi - cosLambda * sin1_Phi, | |
-cosLambda * cosPhi - sinLambda * sin1_Phi | |
]; | |
} | |
wiechelRaw.invert = function(x, y) { | |
var w = (x * x + y * y) / -2, | |
k = sqrt(-w * (2 + w)), | |
b = y * w + x * k, | |
a = x * w - y * k, | |
D = sqrt(a * a + b * b); | |
return [ | |
atan2(k * b, D * (1 + w)), | |
D ? -asin(k * a / D) : 0 | |
]; | |
}; | |
var wiechel = function() { | |
return d3Geo.geoProjection(wiechelRaw) | |
.rotate([0, -90, 45]) | |
.scale(124.75) | |
.clipAngle(180 - 1e-3); | |
}; | |
function winkel3Raw(lambda, phi) { | |
var coordinates = aitoffRaw(lambda, phi); | |
return [ | |
(coordinates[0] + lambda / halfPi) / 2, | |
(coordinates[1] + phi) / 2 | |
]; | |
} | |
winkel3Raw.invert = function(x, y) { | |
var lambda = x, phi = y, i = 25; | |
do { | |
var cosphi = cos(phi), | |
sinphi = sin(phi), | |
sin_2phi = sin(2 * phi), | |
sin2phi = sinphi * sinphi, | |
cos2phi = cosphi * cosphi, | |
sinlambda = sin(lambda), | |
coslambda_2 = cos(lambda / 2), | |
sinlambda_2 = sin(lambda / 2), | |
sin2lambda_2 = sinlambda_2 * sinlambda_2, | |
C = 1 - cos2phi * coslambda_2 * coslambda_2, | |
E = C ? acos(cosphi * coslambda_2) * sqrt(F = 1 / C) : F = 0, | |
F, | |
fx = 0.5 * (2 * E * cosphi * sinlambda_2 + lambda / halfPi) - x, | |
fy = 0.5 * (E * sinphi + phi) - y, | |
dxdlambda = 0.5 * F * (cos2phi * sin2lambda_2 + E * cosphi * coslambda_2 * sin2phi) + 0.5 / halfPi, | |
dxdphi = F * (sinlambda * sin_2phi / 4 - E * sinphi * sinlambda_2), | |
dydlambda = 0.125 * F * (sin_2phi * sinlambda_2 - E * sinphi * cos2phi * sinlambda), | |
dydphi = 0.5 * F * (sin2phi * coslambda_2 + E * sin2lambda_2 * cosphi) + 0.5, | |
denominator = dxdphi * dydlambda - dydphi * dxdlambda, | |
dlambda = (fy * dxdphi - fx * dydphi) / denominator, | |
dphi = (fx * dydlambda - fy * dxdlambda) / denominator; | |
lambda -= dlambda, phi -= dphi; | |
} while ((abs(dlambda) > epsilon || abs(dphi) > epsilon) && --i > 0); | |
return [lambda, phi]; | |
}; | |
var winkel3 = function() { | |
return d3Geo.geoProjection(winkel3Raw) | |
.scale(158.837); | |
}; | |
exports.geoAiry = airy; | |
exports.geoAiryRaw = airyRaw; | |
exports.geoAitoff = aitoff; | |
exports.geoAitoffRaw = aitoffRaw; | |
exports.geoArmadillo = armadillo; | |
exports.geoArmadilloRaw = armadilloRaw; | |
exports.geoAugust = august; | |
exports.geoAugustRaw = augustRaw; | |
exports.geoBaker = baker; | |
exports.geoBakerRaw = bakerRaw; | |
exports.geoBerghaus = berghaus; | |
exports.geoBerghausRaw = berghausRaw; | |
exports.geoBoggs = boggs; | |
exports.geoBoggsRaw = boggsRaw; | |
exports.geoBonne = bonne; | |
exports.geoBonneRaw = bonneRaw; | |
exports.geoBottomley = bottomley; | |
exports.geoBottomleyRaw = bottomleyRaw; | |
exports.geoBromley = bromley; | |
exports.geoBromleyRaw = bromleyRaw; | |
exports.geoChamberlin = chamberlin; | |
exports.geoChamberlinRaw = chamberlinRaw; | |
exports.geoChamberlinAfrica = chamberlinAfrica; | |
exports.geoCollignon = collignon; | |
exports.geoCollignonRaw = collignonRaw; | |
exports.geoCraig = craig; | |
exports.geoCraigRaw = craigRaw; | |
exports.geoCraster = craster; | |
exports.geoCrasterRaw = crasterRaw; | |
exports.geoCylindricalEqualArea = cylindricalEqualArea; | |
exports.geoCylindricalEqualAreaRaw = cylindricalEqualAreaRaw; | |
exports.geoCylindricalStereographic = cylindricalStereographic; | |
exports.geoCylindricalStereographicRaw = cylindricalStereographicRaw; | |
exports.geoEckert1 = eckert1; | |
exports.geoEckert1Raw = eckert1Raw; | |
exports.geoEckert2 = eckert2; | |
exports.geoEckert2Raw = eckert2Raw; | |
exports.geoEckert3 = eckert3; | |
exports.geoEckert3Raw = eckert3Raw; | |
exports.geoEckert4 = eckert4; | |
exports.geoEckert4Raw = eckert4Raw; | |
exports.geoEckert5 = eckert5; | |
exports.geoEckert5Raw = eckert5Raw; | |
exports.geoEckert6 = eckert6; | |
exports.geoEckert6Raw = eckert6Raw; | |
exports.geoEisenlohr = eisenlohr; | |
exports.geoEisenlohrRaw = eisenlohrRaw; | |
exports.geoFahey = fahey; | |
exports.geoFaheyRaw = faheyRaw; | |
exports.geoFoucaut = foucaut; | |
exports.geoFoucautRaw = foucautRaw; | |
exports.geoGilbert = gilbert; | |
exports.geoGingery = gingery; | |
exports.geoGingeryRaw = gingeryRaw; | |
exports.geoGinzburg4 = ginzburg4; | |
exports.geoGinzburg4Raw = ginzburg4Raw; | |
exports.geoGinzburg5 = ginzburg5; | |
exports.geoGinzburg5Raw = ginzburg5Raw; | |
exports.geoGinzburg6 = ginzburg6; | |
exports.geoGinzburg6Raw = ginzburg6Raw; | |
exports.geoGinzburg8 = ginzburg8; | |
exports.geoGinzburg8Raw = ginzburg8Raw; | |
exports.geoGinzburg9 = ginzburg9; | |
exports.geoGinzburg9Raw = ginzburg9Raw; | |
exports.geoGringorten = gringorten; | |
exports.geoGringortenRaw = gringortenRaw; | |
exports.geoGuyou = guyou; | |
exports.geoGuyouRaw = guyouRaw; | |
exports.geoHammer = hammer; | |
exports.geoHammerRaw = hammerRaw; | |
exports.geoHammerRetroazimuthal = hammerRetroazimuthal; | |
exports.geoHammerRetroazimuthalRaw = hammerRetroazimuthalRaw; | |
exports.geoHealpix = healpix; | |
exports.geoHealpixRaw = healpixRaw; | |
exports.geoHill = hill; | |
exports.geoHillRaw = hillRaw; | |
exports.geoHomolosine = homolosine; | |
exports.geoHomolosineRaw = homolosineRaw; | |
exports.geoInterrupt = interrupt; | |
exports.geoInterruptedBoggs = boggs$1; | |
exports.geoInterruptedHomolosine = homolosine$1; | |
exports.geoInterruptedMollweide = mollweide$1; | |
exports.geoInterruptedMollweideHemispheres = mollweideHemispheres; | |
exports.geoInterruptedSinuMollweide = sinuMollweide$1; | |
exports.geoInterruptedSinusoidal = sinusoidal$1; | |
exports.geoKavrayskiy7 = kavrayskiy7; | |
exports.geoKavrayskiy7Raw = kavrayskiy7Raw; | |
exports.geoLagrange = lagrange; | |
exports.geoLagrangeRaw = lagrangeRaw; | |
exports.geoLarrivee = larrivee; | |
exports.geoLarriveeRaw = larriveeRaw; | |
exports.geoLaskowski = laskowski; | |
exports.geoLaskowskiRaw = laskowskiRaw; | |
exports.geoLittrow = littrow; | |
exports.geoLittrowRaw = littrowRaw; | |
exports.geoLoximuthal = loximuthal; | |
exports.geoLoximuthalRaw = loximuthalRaw; | |
exports.geoMiller = miller; | |
exports.geoMillerRaw = millerRaw; | |
exports.geoModifiedStereographic = modifiedStereographic; | |
exports.geoModifiedStereographicRaw = modifiedStereographicRaw; | |
exports.geoModifiedStereographicAlaska = modifiedStereographicAlaska; | |
exports.geoModifiedStereographicGs48 = modifiedStereographicGs48; | |
exports.geoModifiedStereographicGs50 = modifiedStereographicGs50; | |
exports.geoModifiedStereographicMiller = modifiedStereographicMiller; | |
exports.geoModifiedStereographicLee = modifiedStereographicLee; | |
exports.geoMollweide = mollweide; | |
exports.geoMollweideRaw = mollweideRaw; | |
exports.geoMtFlatPolarParabolic = mtFlatPolarParabolic; | |
exports.geoMtFlatPolarParabolicRaw = mtFlatPolarParabolicRaw; | |
exports.geoMtFlatPolarQuartic = mtFlatPolarQuartic; | |
exports.geoMtFlatPolarQuarticRaw = mtFlatPolarQuarticRaw; | |
exports.geoMtFlatPolarSinusoidal = mtFlatPolarSinusoidal; | |
exports.geoMtFlatPolarSinusoidalRaw = mtFlatPolarSinusoidalRaw; | |
exports.geoNaturalEarth = naturalEarth; | |
exports.geoNaturalEarthRaw = naturalEarthRaw; | |
exports.geoNellHammer = nellHammer; | |
exports.geoNellHammerRaw = nellHammerRaw; | |
exports.geoPatterson = patterson; | |
exports.geoPattersonRaw = pattersonRaw; | |
exports.geoPolyconic = polyconic; | |
exports.geoPolyconicRaw = polyconicRaw; | |
exports.geoPolyhedral = polyhedral; | |
exports.geoPolyhedralButterfly = f3; | |
exports.geoPolyhedralCollignon = collignon$1; | |
exports.geoPolyhedralWaterman = waterman; | |
exports.geoProject = index; | |
exports.geoGringortenQuincuncial = gringorten$1; | |
exports.geoPeirceQuincuncial = peirce; | |
exports.geoPierceQuincuncial = peirce; | |
exports.geoQuantize = quantize; | |
exports.geoQuincuncial = quincuncial; | |
exports.geoRectangularPolyconic = rectangularPolyconic; | |
exports.geoRectangularPolyconicRaw = rectangularPolyconicRaw; | |
exports.geoRobinson = robinson; | |
exports.geoRobinsonRaw = robinsonRaw; | |
exports.geoSatellite = satellite; | |
exports.geoSatelliteRaw = satelliteRaw; | |
exports.geoSinuMollweide = sinuMollweide; | |
exports.geoSinuMollweideRaw = sinuMollweideRaw; | |
exports.geoSinusoidal = sinusoidal; | |
exports.geoSinusoidalRaw = sinusoidalRaw; | |
exports.geoStitch = stitch; | |
exports.geoTimes = times; | |
exports.geoTimesRaw = timesRaw; | |
exports.geoTwoPointAzimuthal = twoPointAzimuthal; | |
exports.geoTwoPointAzimuthalRaw = twoPointAzimuthalRaw; | |
exports.geoTwoPointAzimuthalUsa = twoPointAzimuthalUsa; | |
exports.geoTwoPointEquidistant = twoPointEquidistant; | |
exports.geoTwoPointEquidistantRaw = twoPointEquidistantRaw; | |
exports.geoTwoPointEquidistantUsa = twoPointEquidistantUsa; | |
exports.geoVanDerGrinten = vanDerGrinten; | |
exports.geoVanDerGrintenRaw = vanDerGrintenRaw; | |
exports.geoVanDerGrinten2 = vanDerGrinten2; | |
exports.geoVanDerGrinten2Raw = vanDerGrinten2Raw; | |
exports.geoVanDerGrinten3 = vanDerGrinten3; | |
exports.geoVanDerGrinten3Raw = vanDerGrinten3Raw; | |
exports.geoVanDerGrinten4 = vanDerGrinten4; | |
exports.geoVanDerGrinten4Raw = vanDerGrinten4Raw; | |
exports.geoWagner4 = wagner4; | |
exports.geoWagner4Raw = wagner4Raw; | |
exports.geoWagner6 = wagner6; | |
exports.geoWagner6Raw = wagner6Raw; | |
exports.geoWagner7 = wagner7; | |
exports.geoWagner7Raw = wagner7Raw; | |
exports.geoWiechel = wiechel; | |
exports.geoWiechelRaw = wiechelRaw; | |
exports.geoWinkel3 = winkel3; | |
exports.geoWinkel3Raw = winkel3Raw; | |
Object.defineProperty(exports, '__esModule', { value: true }); | |
}))); |
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<style> | |
.stroke { | |
fill: none; | |
stroke: #000; | |
stroke-width: 3px; | |
} | |
.fill { | |
fill: #fff; | |
} | |
.graticule { | |
fill: none; | |
stroke: #777; | |
stroke-width: 0.5px; | |
stroke-opacity: 0.5; | |
} | |
.land { | |
fill: #222; | |
} | |
.boundary { | |
fill: none; | |
stroke: #fff; | |
stroke-width: 0.5px; | |
} | |
</style> | |
<svg width="960" height="484"></svg> | |
<script src="https://d3js.org/d3.v4.min.js"></script> | |
<script src="d3-geo-projection.js"></script> | |
<script src="https://d3js.org/topojson.v1.min.js"></script> | |
<script> | |
var svg = d3.select("svg"), | |
width = +svg.attr("width"), | |
height = +svg.attr("height"); | |
var projection = d3.geoInterruptedHomolosine() | |
.rotate([-15, 0]) | |
.fitExtent([[10,10], [width-30, height-10]], {type: "Sphere"}); | |
var graticule = d3.geoGraticule(); | |
var path = d3.geoPath() | |
.projection(projection); | |
var defs = svg.append("defs"); | |
defs.append("path") | |
.datum({type: "Sphere"}) | |
.attr("id", "sphere") | |
.attr("d", path); | |
defs.append("clipPath") | |
.attr("id", "clip") | |
.append("use") | |
.attr("xlink:href", "#sphere"); | |
svg.append("use") | |
.attr("class", "stroke") | |
.attr("xlink:href", "#sphere"); | |
svg.append("use") | |
.attr("class", "fill") | |
.attr("xlink:href", "#sphere"); | |
svg.append("path") | |
.datum(graticule) | |
.attr("class", "graticule") | |
.attr("clip-path", "url(#clip)") | |
.attr("d", path); | |
var marker = svg.append("path") | |
.attr("fill", "red") | |
svg.on('mousemove', function() { | |
var mouse = d3.mouse(this); | |
marker.attr("d", path({type:"Point", coordinates: projection.invert(mouse)})); | |
}); | |
d3.json("https://gist.githubusercontent.com/mbostock/4090846/raw/d534aba169207548a8a3d670c9c2cc719ff05c47/world-50m.json", function(error, world) { | |
if (error) throw error; | |
svg.insert("path", ".graticule") | |
.datum(topojson.feature(world, world.objects.land)) | |
.attr("class", "land") | |
.attr("clip-path", "url(#clip)") | |
.attr("d", path); | |
svg.insert("path", ".graticule") | |
.datum(topojson.mesh(world, world.objects.countries, function(a, b) { return a !== b; })) | |
.attr("class", "boundary") | |
.attr("clip-path", "url(#clip)") | |
.attr("d", path); | |
}); | |
</script> |