Skip to content

Instantly share code, notes, and snippets.

@Fil
Last active May 26, 2020 21:38
Show Gist options
  • Save Fil/cb3718040261307ef04b4031615e0c5c to your computer and use it in GitHub Desktop.
Save Fil/cb3718040261307ef04b4031615e0c5c to your computer and use it in GitHub Desktop.
Interrupted Homolosine
license: gpl-3.0
border: no
height: 484
// https://d3js.org/d3-geo-projection/ Version 1.2.1. Copyright 2017 Mike Bostock.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-geo'), require('d3-array')) :
typeof define === 'function' && define.amd ? define(['exports', 'd3-geo', 'd3-array'], factory) :
(factory((global.d3 = global.d3 || {}),global.d3,global.d3));
}(this, (function (exports,d3Geo,d3Array) { 'use strict';
var abs = Math.abs;
var atan = Math.atan;
var atan2 = Math.atan2;
var cos = Math.cos;
var exp = Math.exp;
var floor = Math.floor;
var log = Math.log;
var max = Math.max;
var min = Math.min;
var pow = Math.pow;
var round = Math.round;
var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
var sin = Math.sin;
var tan = Math.tan;
var epsilon = 1e-6;
var epsilon2 = 1e-12;
var pi = Math.PI;
var halfPi = pi / 2;
var quarterPi = pi / 4;
var sqrt1_2 = Math.SQRT1_2;
var sqrt2 = sqrt(2);
var sqrtPi = sqrt(pi);
var tau = pi * 2;
var degrees = 180 / pi;
var radians = pi / 180;
function sinci(x) {
return x ? x / Math.sin(x) : 1;
}
function asin(x) {
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
}
function acos(x) {
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
}
function sqrt(x) {
return x > 0 ? Math.sqrt(x) : 0;
}
function tanh(x) {
x = exp(2 * x);
return (x - 1) / (x + 1);
}
function sinh(x) {
return (exp(x) - exp(-x)) / 2;
}
function cosh(x) {
return (exp(x) + exp(-x)) / 2;
}
function arsinh(x) {
return log(x + sqrt(x * x + 1));
}
function arcosh(x) {
return log(x + sqrt(x * x - 1));
}
function airyRaw(beta) {
var tanBeta_2 = tan(beta / 2),
b = 2 * log(cos(beta / 2)) / (tanBeta_2 * tanBeta_2);
function forward(x, y) {
var cosx = cos(x),
cosy = cos(y),
siny = sin(y),
cosz = cosy * cosx,
k = -((1 - cosz ? log((1 + cosz) / 2) / (1 - cosz) : -0.5) + b / (1 + cosz));
return [k * cosy * sin(x), k * siny];
}
forward.invert = function(x, y) {
var r = sqrt(x * x + y * y),
z = -beta / 2,
i = 50, delta;
if (!r) return [0, 0];
do {
var z_2 = z / 2,
cosz_2 = cos(z_2),
sinz_2 = sin(z_2),
tanz_2 = tan(z_2),
lnsecz_2 = log(1 / cosz_2);
z -= delta = (2 / tanz_2 * lnsecz_2 - b * tanz_2 - r) / (-lnsecz_2 / (sinz_2 * sinz_2) + 1 - b / (2 * cosz_2 * cosz_2));
} while (abs(delta) > epsilon && --i > 0);
var sinz = sin(z);
return [atan2(x * sinz, r * cos(z)), asin(y * sinz / r)];
};
return forward;
}
var airy = function() {
var beta = halfPi,
m = d3Geo.geoProjectionMutator(airyRaw),
p = m(beta);
p.radius = function(_) {
return arguments.length ? m(beta = _ * radians) : beta * degrees;
};
return p
.scale(179.976)
.clipAngle(147);
};
function aitoffRaw(x, y) {
var cosy = cos(y), sincia = sinci(acos(cosy * cos(x /= 2)));
return [2 * cosy * sin(x) * sincia, sin(y) * sincia];
}
// Abort if [x, y] is not within an ellipse centered at [0, 0] with
// semi-major axis pi and semi-minor axis pi/2.
aitoffRaw.invert = function(x, y) {
if (x * x + 4 * y * y > pi * pi + epsilon) return;
var x1 = x, y1 = y, i = 25;
do {
var sinx = sin(x1),
sinx_2 = sin(x1 / 2),
cosx_2 = cos(x1 / 2),
siny = sin(y1),
cosy = cos(y1),
sin_2y = sin(2 * y1),
sin2y = siny * siny,
cos2y = cosy * cosy,
sin2x_2 = sinx_2 * sinx_2,
c = 1 - cos2y * cosx_2 * cosx_2,
e = c ? acos(cosy * cosx_2) * sqrt(f = 1 / c) : f = 0,
f,
fx = 2 * e * cosy * sinx_2 - x,
fy = e * siny - y,
dxdx = f * (cos2y * sin2x_2 + e * cosy * cosx_2 * sin2y),
dxdy = f * (0.5 * sinx * sin_2y - e * 2 * siny * sinx_2),
dydx = f * 0.25 * (sin_2y * sinx_2 - e * siny * cos2y * sinx),
dydy = f * (sin2y * cosx_2 + e * sin2x_2 * cosy),
z = dxdy * dydx - dydy * dxdx;
if (!z) break;
var dx = (fy * dxdy - fx * dydy) / z,
dy = (fx * dydx - fy * dxdx) / z;
x1 -= dx, y1 -= dy;
} while ((abs(dx) > epsilon || abs(dy) > epsilon) && --i > 0);
return [x1, y1];
};
var aitoff = function() {
return d3Geo.geoProjection(aitoffRaw)
.scale(152.63);
};
function armadilloRaw(phi0) {
var sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0),
sPhi0 = phi0 >= 0 ? 1 : -1,
tanPhi0 = tan(sPhi0 * phi0),
k = (1 + sinPhi0 - cosPhi0) / 2;
function forward(lambda, phi) {
var cosPhi = cos(phi),
cosLambda = cos(lambda /= 2);
return [
(1 + cosPhi) * sin(lambda),
(sPhi0 * phi > -atan2(cosLambda, tanPhi0) - 1e-3 ? 0 : -sPhi0 * 10) + k + sin(phi) * cosPhi0 - (1 + cosPhi) * sinPhi0 * cosLambda // TODO D3 core should allow null or [NaN, NaN] to be returned.
];
}
forward.invert = function(x, y) {
var lambda = 0,
phi = 0,
i = 50;
do {
var cosLambda = cos(lambda),
sinLambda = sin(lambda),
cosPhi = cos(phi),
sinPhi = sin(phi),
A = 1 + cosPhi,
fx = A * sinLambda - x,
fy = k + sinPhi * cosPhi0 - A * sinPhi0 * cosLambda - y,
dxdLambda = A * cosLambda / 2,
dxdPhi = -sinLambda * sinPhi,
dydLambda = sinPhi0 * A * sinLambda / 2,
dydPhi = cosPhi0 * cosPhi + sinPhi0 * cosLambda * sinPhi,
denominator = dxdPhi * dydLambda - dydPhi * dxdLambda,
dLambda = (fy * dxdPhi - fx * dydPhi) / denominator / 2,
dPhi = (fx * dydLambda - fy * dxdLambda) / denominator;
lambda -= dLambda, phi -= dPhi;
} while ((abs(dLambda) > epsilon || abs(dPhi) > epsilon) && --i > 0);
return sPhi0 * phi > -atan2(cos(lambda), tanPhi0) - 1e-3 ? [lambda * 2, phi] : null;
};
return forward;
}
var armadillo = function() {
var phi0 = 20 * radians,
sPhi0 = phi0 >= 0 ? 1 : -1,
tanPhi0 = tan(sPhi0 * phi0),
m = d3Geo.geoProjectionMutator(armadilloRaw),
p = m(phi0),
stream_ = p.stream;
p.parallel = function(_) {
if (!arguments.length) return phi0 * degrees;
tanPhi0 = tan((sPhi0 = (phi0 = _ * radians) >= 0 ? 1 : -1) * phi0);
return m(phi0);
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart(), sphereStream.lineStart();
for (var lambda = sPhi0 * -180; sPhi0 * lambda < 180; lambda += sPhi0 * 90) sphereStream.point(lambda, sPhi0 * 90);
while (sPhi0 * (lambda -= phi0) >= -180) { // TODO precision?
sphereStream.point(lambda, sPhi0 * -atan2(cos(lambda * radians / 2), tanPhi0) * degrees);
}
sphereStream.lineEnd(), sphereStream.polygonEnd();
};
return rotateStream;
};
return p
.scale(218.695)
.center([0, 28.0974]);
};
function augustRaw(lambda, phi) {
var tanPhi = tan(phi / 2),
k = sqrt(1 - tanPhi * tanPhi),
c = 1 + k * cos(lambda /= 2),
x = sin(lambda) * k / c,
y = tanPhi / c,
x2 = x * x,
y2 = y * y;
return [
4 / 3 * x * (3 + x2 - 3 * y2),
4 / 3 * y * (3 + 3 * x2 - y2)
];
}
augustRaw.invert = function(x, y) {
x *= 3 / 8, y *= 3 / 8;
if (!x && abs(y) > 1) return null;
var x2 = x * x,
y2 = y * y,
s = 1 + x2 + y2,
sin3Eta = sqrt((s - sqrt(s * s - 4 * y * y)) / 2),
eta = asin(sin3Eta) / 3,
xi = sin3Eta ? arcosh(abs(y / sin3Eta)) / 3 : arsinh(abs(x)) / 3,
cosEta = cos(eta),
coshXi = cosh(xi),
d = coshXi * coshXi - cosEta * cosEta;
return [
sign(x) * 2 * atan2(sinh(xi) * cosEta, 0.25 - d),
sign(y) * 2 * atan2(coshXi * sin(eta), 0.25 + d)
];
};
var august = function() {
return d3Geo.geoProjection(augustRaw)
.scale(66.1603);
};
var sqrt8 = sqrt(8);
var phi0 = log(1 + sqrt2);
function bakerRaw(lambda, phi) {
var phi0 = abs(phi);
return phi0 < quarterPi
? [lambda, log(tan(quarterPi + phi / 2))]
: [lambda * cos(phi0) * (2 * sqrt2 - 1 / sin(phi0)), sign(phi) * (2 * sqrt2 * (phi0 - quarterPi) - log(tan(phi0 / 2)))];
}
bakerRaw.invert = function(x, y) {
if ((y0 = abs(y)) < phi0) return [x, 2 * atan(exp(y)) - halfPi];
var phi = quarterPi, i = 25, delta, y0;
do {
var cosPhi_2 = cos(phi / 2), tanPhi_2 = tan(phi / 2);
phi -= delta = (sqrt8 * (phi - quarterPi) - log(tanPhi_2) - y0) / (sqrt8 - cosPhi_2 * cosPhi_2 / (2 * tanPhi_2));
} while (abs(delta) > epsilon2 && --i > 0);
return [x / (cos(phi) * (sqrt8 - 1 / sin(phi))), sign(y) * phi];
};
var baker = function() {
return d3Geo.geoProjection(bakerRaw)
.scale(112.314);
};
function berghausRaw(lobes) {
var k = 2 * pi / lobes;
function forward(lambda, phi) {
var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi);
if (abs(lambda) > halfPi) { // back hemisphere
var theta = atan2(p[1], p[0]),
r = sqrt(p[0] * p[0] + p[1] * p[1]),
theta0 = k * round((theta - halfPi) / k) + halfPi,
α = atan2(sin(theta -= theta0), 2 - cos(theta)); // angle relative to lobe end
theta = theta0 + asin(pi / r * sin(α)) - α;
p[0] = r * cos(theta);
p[1] = r * sin(theta);
}
return p;
}
forward.invert = function(x, y) {
var r = sqrt(x * x + y * y);
if (r > halfPi) {
var theta = atan2(y, x),
theta0 = k * round((theta - halfPi) / k) + halfPi,
s = theta > theta0 ? -1 : 1,
A = r * cos(theta0 - theta),
cotα = 1 / tan(s * acos((A - pi) / sqrt(pi * (pi - 2 * A) + r * r)));
theta = theta0 + 2 * atan((cotα + s * sqrt(cotα * cotα - 3)) / 3);
x = r * cos(theta), y = r * sin(theta);
}
return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y);
};
return forward;
}
var berghaus = function() {
var lobes = 5,
m = d3Geo.geoProjectionMutator(berghausRaw),
p = m(lobes),
projectionStream = p.stream,
epsilon$$1 = 1e-2,
cr = -cos(epsilon$$1 * radians),
sr = sin(epsilon$$1 * radians);
p.lobes = function(_) {
return arguments.length ? m(lobes = +_) : lobes;
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = projectionStream(stream),
sphereStream = (p.rotate([0, 0]), projectionStream(stream));
p.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart(), sphereStream.lineStart();
for (var i = 0, delta = 360 / lobes, delta0 = 2 * pi / lobes, phi = 90 - 180 / lobes, phi0 = halfPi; i < lobes; ++i, phi -= delta, phi0 -= delta0) {
sphereStream.point(atan2(sr * cos(phi0), cr) * degrees, asin(sr * sin(phi0)) * degrees);
if (phi < -90) {
sphereStream.point(-90, -180 - phi - epsilon$$1);
sphereStream.point(-90, -180 - phi + epsilon$$1);
} else {
sphereStream.point(90, phi + epsilon$$1);
sphereStream.point(90, phi - epsilon$$1);
}
}
sphereStream.lineEnd(), sphereStream.polygonEnd();
};
return rotateStream;
};
return p
.scale(87.8076)
.center([0, 17.1875])
.clipAngle(180 - 1e-3);
};
function mollweideBromleyTheta(cp, phi) {
var cpsinPhi = cp * sin(phi), i = 30, delta;
do phi -= delta = (phi + sin(phi) - cpsinPhi) / (1 + cos(phi));
while (abs(delta) > epsilon && --i > 0);
return phi / 2;
}
function mollweideBromleyRaw(cx, cy, cp) {
function forward(lambda, phi) {
return [cx * lambda * cos(phi = mollweideBromleyTheta(cp, phi)), cy * sin(phi)];
}
forward.invert = function(x, y) {
return y = asin(y / cy), [x / (cx * cos(y)), asin((2 * y + sin(2 * y)) / cp)];
};
return forward;
}
var mollweideRaw = mollweideBromleyRaw(sqrt2 / halfPi, sqrt2, pi);
var mollweide = function() {
return d3Geo.geoProjection(mollweideRaw)
.scale(169.529);
};
var k = 2.00276;
var w = 1.11072;
function boggsRaw(lambda, phi) {
var theta = mollweideBromleyTheta(pi, phi);
return [k * lambda / (1 / cos(phi) + w / cos(theta)), (phi + sqrt2 * sin(theta)) / k];
}
boggsRaw.invert = function(x, y) {
var ky = k * y, theta = y < 0 ? -quarterPi : quarterPi, i = 25, delta, phi;
do {
phi = ky - sqrt2 * sin(theta);
theta -= delta = (sin(2 * theta) + 2 * theta - pi * sin(phi)) / (2 * cos(2 * theta) + 2 + pi * cos(phi) * sqrt2 * cos(theta));
} while (abs(delta) > epsilon && --i > 0);
phi = ky - sqrt2 * sin(theta);
return [x * (1 / cos(phi) + w / cos(theta)) / k, phi];
};
var boggs = function() {
return d3Geo.geoProjection(boggsRaw)
.scale(160.857);
};
var parallel1 = function(projectAt) {
var phi0 = 0,
m = d3Geo.geoProjectionMutator(projectAt),
p = m(phi0);
p.parallel = function(_) {
return arguments.length ? m(phi0 = _ * radians) : phi0 * degrees;
};
return p;
};
function sinusoidalRaw(lambda, phi) {
return [lambda * cos(phi), phi];
}
sinusoidalRaw.invert = function(x, y) {
return [x / cos(y), y];
};
var sinusoidal = function() {
return d3Geo.geoProjection(sinusoidalRaw)
.scale(152.63);
};
function bonneRaw(phi0) {
if (!phi0) return sinusoidalRaw;
var cotPhi0 = 1 / tan(phi0);
function forward(lambda, phi) {
var rho = cotPhi0 + phi0 - phi,
e = rho ? lambda * cos(phi) / rho : rho;
return [rho * sin(e), cotPhi0 - rho * cos(e)];
}
forward.invert = function(x, y) {
var rho = sqrt(x * x + (y = cotPhi0 - y) * y),
phi = cotPhi0 + phi0 - rho;
return [rho / cos(phi) * atan2(x, y), phi];
};
return forward;
}
var bonne = function() {
return parallel1(bonneRaw)
.scale(123.082)
.center([0, 26.1441])
.parallel(45);
};
function bottomleyRaw(sinPsi) {
function forward(lambda, phi) {
var rho = halfPi - phi,
eta = rho ? lambda * sinPsi * sin(rho) / rho : rho;
return [rho * sin(eta) / sinPsi, halfPi - rho * cos(eta)];
}
forward.invert = function(x, y) {
var x1 = x * sinPsi,
y1 = halfPi - y,
rho = sqrt(x1 * x1 + y1 * y1),
eta = atan2(x1, y1);
return [(rho ? rho / sin(rho) : 1) * eta / sinPsi, halfPi - rho];
};
return forward;
}
var bottomley = function() {
var sinPsi = 0.5,
m = d3Geo.geoProjectionMutator(bottomleyRaw),
p = m(sinPsi);
p.fraction = function(_) {
return arguments.length ? m(sinPsi = +_) : sinPsi;
};
return p
.scale(158.837);
};
var bromleyRaw = mollweideBromleyRaw(1, 4 / pi, pi);
var bromley = function() {
return d3Geo.geoProjection(bromleyRaw)
.scale(152.63);
};
// Azimuthal distance.
function distance(dPhi, c1, s1, c2, s2, dLambda) {
var cosdLambda = cos(dLambda), r;
if (abs(dPhi) > 1 || abs(dLambda) > 1) {
r = acos(s1 * s2 + c1 * c2 * cosdLambda);
} else {
var sindPhi = sin(dPhi / 2), sindLambda = sin(dLambda / 2);
r = 2 * asin(sqrt(sindPhi * sindPhi + c1 * c2 * sindLambda * sindLambda));
}
return abs(r) > epsilon ? [r, atan2(c2 * sin(dLambda), c1 * s2 - s1 * c2 * cosdLambda)] : [0, 0];
}
// Angle opposite a, and contained between sides of lengths b and c.
function angle(b, c, a) {
return acos((b * b + c * c - a * a) / (2 * b * c));
}
// Normalize longitude.
function longitude(lambda) {
return lambda - 2 * pi * floor((lambda + pi) / (2 * pi));
}
function chamberlinRaw(p0, p1, p2) {
var points = [
[p0[0], p0[1], sin(p0[1]), cos(p0[1])],
[p1[0], p1[1], sin(p1[1]), cos(p1[1])],
[p2[0], p2[1], sin(p2[1]), cos(p2[1])]
];
for (var a = points[2], b, i = 0; i < 3; ++i, a = b) {
b = points[i];
a.v = distance(b[1] - a[1], a[3], a[2], b[3], b[2], b[0] - a[0]);
a.point = [0, 0];
}
var beta0 = angle(points[0].v[0], points[2].v[0], points[1].v[0]),
beta1 = angle(points[0].v[0], points[1].v[0], points[2].v[0]),
beta2 = pi - beta0;
points[2].point[1] = 0;
points[0].point[0] = -(points[1].point[0] = points[0].v[0] / 2);
var mean = [
points[2].point[0] = points[0].point[0] + points[2].v[0] * cos(beta0),
2 * (points[0].point[1] = points[1].point[1] = points[2].v[0] * sin(beta0))
];
function forward(lambda, phi) {
var sinPhi = sin(phi),
cosPhi = cos(phi),
v = new Array(3), i;
// Compute distance and azimuth from control points.
for (i = 0; i < 3; ++i) {
var p = points[i];
v[i] = distance(phi - p[1], p[3], p[2], cosPhi, sinPhi, lambda - p[0]);
if (!v[i][0]) return p.point;
v[i][1] = longitude(v[i][1] - p.v[1]);
}
// Arithmetic mean of interception points.
var point = mean.slice();
for (i = 0; i < 3; ++i) {
var j = i == 2 ? 0 : i + 1;
var a = angle(points[i].v[0], v[i][0], v[j][0]);
if (v[i][1] < 0) a = -a;
if (!i) {
point[0] += v[i][0] * cos(a);
point[1] -= v[i][0] * sin(a);
} else if (i == 1) {
a = beta1 - a;
point[0] -= v[i][0] * cos(a);
point[1] -= v[i][0] * sin(a);
} else {
a = beta2 - a;
point[0] += v[i][0] * cos(a);
point[1] += v[i][0] * sin(a);
}
}
point[0] /= 3, point[1] /= 3;
return point;
}
return forward;
}
function pointRadians(p) {
return p[0] *= radians, p[1] *= radians, p;
}
function chamberlinAfrica() {
return chamberlin([0, 22], [45, 22], [22.5, -22])
.scale(380)
.center([22.5, 2]);
}
function chamberlin(p0, p1, p2) { // TODO order matters!
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: [p0, p1, p2]}),
R = [-c[0], -c[1]],
r = d3Geo.geoRotation(R),
p = d3Geo.geoProjection(chamberlinRaw(pointRadians(r(p0)), pointRadians(r(p1)), pointRadians(r(p2)))).rotate(R),
center = p.center;
delete p.rotate;
p.center = function(_) {
return arguments.length ? center(r(_)) : r.invert(center());
};
return p
.clipAngle(90);
}
function collignonRaw(lambda, phi) {
var alpha = sqrt(1 - sin(phi));
return [(2 / sqrtPi) * lambda * alpha, sqrtPi * (1 - alpha)];
}
collignonRaw.invert = function(x, y) {
var lambda = (lambda = y / sqrtPi - 1) * lambda;
return [lambda > 0 ? x * sqrt(pi / lambda) / 2 : 0, asin(1 - lambda)];
};
var collignon = function() {
return d3Geo.geoProjection(collignonRaw)
.scale(95.6464)
.center([0, 30]);
};
function craigRaw(phi0) {
var tanPhi0 = tan(phi0);
function forward(lambda, phi) {
return [lambda, (lambda ? lambda / sin(lambda) : 1) * (sin(phi) * cos(lambda) - tanPhi0 * cos(phi))];
}
forward.invert = tanPhi0 ? function(x, y) {
if (x) y *= sin(x) / x;
var cosλ = cos(x);
return [x, 2 * atan2(sqrt(cosλ * cosλ + tanPhi0 * tanPhi0 - y * y) - cosλ, tanPhi0 - y)];
} : function(x, y) {
return [x, asin(x ? y * tan(x) / x : y)];
};
return forward;
}
var craig = function() {
return parallel1(craigRaw)
.scale(249.828)
.clipAngle(90);
};
var sqrt3 = sqrt(3);
function crasterRaw(lambda, phi) {
return [sqrt3 * lambda * (2 * cos(2 * phi / 3) - 1) / sqrtPi, sqrt3 * sqrtPi * sin(phi / 3)];
}
crasterRaw.invert = function(x, y) {
var phi = 3 * asin(y / (sqrt3 * sqrtPi));
return [sqrtPi * x / (sqrt3 * (2 * cos(2 * phi / 3) - 1)), phi];
};
var craster = function() {
return d3Geo.geoProjection(crasterRaw)
.scale(156.19);
};
function cylindricalEqualAreaRaw(phi0) {
var cosPhi0 = cos(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, sin(phi) / cosPhi0];
}
forward.invert = function(x, y) {
return [x / cosPhi0, asin(y * cosPhi0)];
};
return forward;
}
var cylindricalEqualArea = function() {
return parallel1(cylindricalEqualAreaRaw)
.parallel(38.58) // acos(sqrt(width / height / pi)) * radians
.scale(195.044); // width / (sqrt(width / height / pi) * 2 * pi)
};
function cylindricalStereographicRaw(phi0) {
var cosPhi0 = cos(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, (1 + cosPhi0) * tan(phi / 2)];
}
forward.invert = function(x, y) {
return [x / cosPhi0, atan(y / (1 + cosPhi0)) * 2];
};
return forward;
}
var cylindricalStereographic = function() {
return parallel1(cylindricalStereographicRaw)
.scale(124.75);
};
function eckert1Raw(lambda, phi) {
var alpha = sqrt(8 / (3 * pi));
return [
alpha * lambda * (1 - abs(phi) / pi),
alpha * phi
];
}
eckert1Raw.invert = function(x, y) {
var alpha = sqrt(8 / (3 * pi)),
phi = y / alpha;
return [
x / (alpha * (1 - abs(phi) / pi)),
phi
];
};
var eckert1 = function() {
return d3Geo.geoProjection(eckert1Raw)
.scale(165.664);
};
function eckert2Raw(lambda, phi) {
var alpha = sqrt(4 - 3 * sin(abs(phi)));
return [
2 / sqrt(6 * pi) * lambda * alpha,
sign(phi) * sqrt(2 * pi / 3) * (2 - alpha)
];
}
eckert2Raw.invert = function(x, y) {
var alpha = 2 - abs(y) / sqrt(2 * pi / 3);
return [
x * sqrt(6 * pi) / (2 * alpha),
sign(y) * asin((4 - alpha * alpha) / 3)
];
};
var eckert2 = function() {
return d3Geo.geoProjection(eckert2Raw)
.scale(165.664);
};
function eckert3Raw(lambda, phi) {
var k = sqrt(pi * (4 + pi));
return [
2 / k * lambda * (1 + sqrt(1 - 4 * phi * phi / (pi * pi))),
4 / k * phi
];
}
eckert3Raw.invert = function(x, y) {
var k = sqrt(pi * (4 + pi)) / 2;
return [
x * k / (1 + sqrt(1 - y * y * (4 + pi) / (4 * pi))),
y * k / 2
];
};
var eckert3 = function() {
return d3Geo.geoProjection(eckert3Raw)
.scale(180.739);
};
function eckert4Raw(lambda, phi) {
var k = (2 + halfPi) * sin(phi);
phi /= 2;
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; i++) {
var cosPhi = cos(phi);
phi -= delta = (phi + sin(phi) * (cosPhi + 2) - k) / (2 * cosPhi * (1 + cosPhi));
}
return [
2 / sqrt(pi * (4 + pi)) * lambda * (1 + cos(phi)),
2 * sqrt(pi / (4 + pi)) * sin(phi)
];
}
eckert4Raw.invert = function(x, y) {
var A = y * sqrt((4 + pi) / pi) / 2,
k = asin(A),
c = cos(k);
return [
x / (2 / sqrt(pi * (4 + pi)) * (1 + c)),
asin((k + A * (c + 2)) / (2 + halfPi))
];
};
var eckert4 = function() {
return d3Geo.geoProjection(eckert4Raw)
.scale(180.739);
};
function eckert5Raw(lambda, phi) {
return [
lambda * (1 + cos(phi)) / sqrt(2 + pi),
2 * phi / sqrt(2 + pi)
];
}
eckert5Raw.invert = function(x, y) {
var k = sqrt(2 + pi),
phi = y * k / 2;
return [
k * x / (1 + cos(phi)),
phi
];
};
var eckert5 = function() {
return d3Geo.geoProjection(eckert5Raw)
.scale(173.044);
};
function eckert6Raw(lambda, phi) {
var k = (1 + halfPi) * sin(phi);
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; i++) {
phi -= delta = (phi + sin(phi) - k) / (1 + cos(phi));
}
k = sqrt(2 + pi);
return [
lambda * (1 + cos(phi)) / k,
2 * phi / k
];
}
eckert6Raw.invert = function(x, y) {
var j = 1 + halfPi,
k = sqrt(j / 2);
return [
x * 2 * k / (1 + cos(y *= k)),
asin((y + sin(y)) / j)
];
};
var eckert6 = function() {
return d3Geo.geoProjection(eckert6Raw)
.scale(173.044);
};
var eisenlohrK = 3 + 2 * sqrt2;
function eisenlohrRaw(lambda, phi) {
var s0 = sin(lambda /= 2),
c0 = cos(lambda),
k = sqrt(cos(phi)),
c1 = cos(phi /= 2),
t = sin(phi) / (c1 + sqrt2 * c0 * k),
c = sqrt(2 / (1 + t * t)),
v = sqrt((sqrt2 * c1 + (c0 + s0) * k) / (sqrt2 * c1 + (c0 - s0) * k));
return [
eisenlohrK * (c * (v - 1 / v) - 2 * log(v)),
eisenlohrK * (c * t * (v + 1 / v) - 2 * atan(t))
];
}
eisenlohrRaw.invert = function(x, y) {
if (!(p = augustRaw.invert(x / 1.2, y * 1.065))) return null;
var lambda = p[0], phi = p[1], i = 20, p;
x /= eisenlohrK, y /= eisenlohrK;
do {
var _0 = lambda / 2,
_1 = phi / 2,
s0 = sin(_0),
c0 = cos(_0),
s1 = sin(_1),
c1 = cos(_1),
cos1 = cos(phi),
k = sqrt(cos1),
t = s1 / (c1 + sqrt2 * c0 * k),
t2 = t * t,
c = sqrt(2 / (1 + t2)),
v0 = (sqrt2 * c1 + (c0 + s0) * k),
v1 = (sqrt2 * c1 + (c0 - s0) * k),
v2 = v0 / v1,
v = sqrt(v2),
vm1v = v - 1 / v,
vp1v = v + 1 / v,
fx = c * vm1v - 2 * log(v) - x,
fy = c * t * vp1v - 2 * atan(t) - y,
deltatDeltaLambda = s1 && sqrt1_2 * k * s0 * t2 / s1,
deltatDeltaPhi = (sqrt2 * c0 * c1 + k) / (2 * (c1 + sqrt2 * c0 * k) * (c1 + sqrt2 * c0 * k) * k),
deltacDeltat = -0.5 * t * c * c * c,
deltacDeltaLambda = deltacDeltat * deltatDeltaLambda,
deltacDeltaPhi = deltacDeltat * deltatDeltaPhi,
A = (A = 2 * c1 + sqrt2 * k * (c0 - s0)) * A * v,
deltavDeltaLambda = (sqrt2 * c0 * c1 * k + cos1) / A,
deltavDeltaPhi = -(sqrt2 * s0 * s1) / (k * A),
deltaxDeltaLambda = vm1v * deltacDeltaLambda - 2 * deltavDeltaLambda / v + c * (deltavDeltaLambda + deltavDeltaLambda / v2),
deltaxDeltaPhi = vm1v * deltacDeltaPhi - 2 * deltavDeltaPhi / v + c * (deltavDeltaPhi + deltavDeltaPhi / v2),
deltayDeltaLambda = t * vp1v * deltacDeltaLambda - 2 * deltatDeltaLambda / (1 + t2) + c * vp1v * deltatDeltaLambda + c * t * (deltavDeltaLambda - deltavDeltaLambda / v2),
deltayDeltaPhi = t * vp1v * deltacDeltaPhi - 2 * deltatDeltaPhi / (1 + t2) + c * vp1v * deltatDeltaPhi + c * t * (deltavDeltaPhi - deltavDeltaPhi / v2),
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda;
if (!denominator) break;
var deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator,
deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
lambda -= deltaLambda;
phi = max(-halfPi, min(halfPi, phi - deltaPhi));
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0);
return abs(abs(phi) - halfPi) < epsilon ? [0, phi] : i && [lambda, phi];
};
var eisenlohr = function() {
return d3Geo.geoProjection(eisenlohrRaw)
.scale(62.5271);
};
var faheyK = cos(35 * radians);
function faheyRaw(lambda, phi) {
var t = tan(phi / 2);
return [lambda * faheyK * sqrt(1 - t * t), (1 + faheyK) * t];
}
faheyRaw.invert = function(x, y) {
var t = y / (1 + faheyK);
return [x && x / (faheyK * sqrt(1 - t * t)), 2 * atan(t)];
};
var fahey = function() {
return d3Geo.geoProjection(faheyRaw)
.scale(137.152);
};
function foucautRaw(lambda, phi) {
var k = phi / 2, cosk = cos(k);
return [ 2 * lambda / sqrtPi * cos(phi) * cosk * cosk, sqrtPi * tan(k)];
}
foucautRaw.invert = function(x, y) {
var k = atan(y / sqrtPi), cosk = cos(k), phi = 2 * k;
return [x * sqrtPi / 2 / (cos(phi) * cosk * cosk), phi];
};
var foucaut = function() {
return d3Geo.geoProjection(foucautRaw)
.scale(135.264);
};
function gilbertForward(point) {
return [point[0] / 2, asin(tan(point[1] / 2 * radians)) * degrees];
}
function gilbertInvert(point) {
return [point[0] * 2, 2 * atan(sin(point[1] * radians)) * degrees];
}
var gilbert = function(projectionType) {
if (projectionType == null) projectionType = d3Geo.geoOrthographic;
var projection = projectionType(),
equirectangular = d3Geo.geoEquirectangular().scale(degrees).precision(0).clipAngle(null).translate([0, 0]); // antimeridian cutting
function gilbert(point) {
return projection(gilbertForward(point));
}
if (projection.invert) gilbert.invert = function(point) {
return gilbertInvert(projection.invert(point));
};
gilbert.stream = function(stream) {
var s1 = projection.stream(stream), s0 = equirectangular.stream({
point: function(lambda, phi) { s1.point(lambda / 2, asin(tan(-phi / 2 * radians)) * degrees); },
lineStart: function() { s1.lineStart(); },
lineEnd: function() { s1.lineEnd(); },
polygonStart: function() { s1.polygonStart(); },
polygonEnd: function() { s1.polygonEnd(); }
});
s0.sphere = s1.sphere;
return s0;
};
function property(name) {
gilbert[name] = function(_) {
return arguments.length ? (projection[name](_), gilbert) : projection[name]();
};
}
gilbert.rotate = function(_) {
return arguments.length ? (equirectangular.rotate(_), gilbert) : equirectangular.rotate();
};
gilbert.center = function(_) {
return arguments.length ? (projection.center(gilbertForward(_)), gilbert) : gilbertInvert(projection.center());
};
property("clipAngle");
property("clipExtent");
property("scale");
property("translate");
property("precision");
return gilbert
.scale(249.5);
};
function gingeryRaw(rho, n) {
var k = 2 * pi / n,
rho2 = rho * rho;
function forward(lambda, phi) {
var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi),
x = p[0],
y = p[1],
r2 = x * x + y * y;
if (r2 > rho2) {
var r = sqrt(r2),
theta = atan2(y, x),
theta0 = k * round(theta / k),
alpha = theta - theta0,
rhoCosAlpha = rho * cos(alpha),
k_ = (rho * sin(alpha) - alpha * sin(rhoCosAlpha)) / (halfPi - rhoCosAlpha),
s_ = gingeryLength(alpha, k_),
e = (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi);
x = r;
var i = 50, delta;
do {
x -= delta = (rho + gingeryIntegrate(s_, rhoCosAlpha, x) * e - r) / (s_(x) * e);
} while (abs(delta) > epsilon && --i > 0);
y = alpha * sin(x);
if (x < halfPi) y -= k_ * (x - halfPi);
var s = sin(theta0),
c = cos(theta0);
p[0] = x * c - y * s;
p[1] = x * s + y * c;
}
return p;
}
forward.invert = function(x, y) {
var r2 = x * x + y * y;
if (r2 > rho2) {
var r = sqrt(r2),
theta = atan2(y, x),
theta0 = k * round(theta / k),
dTheta = theta - theta0;
x = r * cos(dTheta);
y = r * sin(dTheta);
var x_halfPi = x - halfPi,
sinx = sin(x),
alpha = y / sinx,
delta = x < halfPi ? Infinity : 0,
i = 10;
while (true) {
var rhosinAlpha = rho * sin(alpha),
rhoCosAlpha = rho * cos(alpha),
sinRhoCosAlpha = sin(rhoCosAlpha),
halfPi_RhoCosAlpha = halfPi - rhoCosAlpha,
k_ = (rhosinAlpha - alpha * sinRhoCosAlpha) / halfPi_RhoCosAlpha,
s_ = gingeryLength(alpha, k_);
if (abs(delta) < epsilon2 || !--i) break;
alpha -= delta = (alpha * sinx - k_ * x_halfPi - y) / (
sinx - x_halfPi * 2 * (
halfPi_RhoCosAlpha * (rhoCosAlpha + alpha * rhosinAlpha * cos(rhoCosAlpha) - sinRhoCosAlpha) -
rhosinAlpha * (rhosinAlpha - alpha * sinRhoCosAlpha)
) / (halfPi_RhoCosAlpha * halfPi_RhoCosAlpha));
}
r = rho + gingeryIntegrate(s_, rhoCosAlpha, x) * (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi);
theta = theta0 + alpha;
x = r * cos(theta);
y = r * sin(theta);
}
return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y);
};
return forward;
}
function gingeryLength(alpha, k) {
return function(x) {
var y_ = alpha * cos(x);
if (x < halfPi) y_ -= k;
return sqrt(1 + y_ * y_);
};
}
// Numerical integration: trapezoidal rule.
function gingeryIntegrate(f, a, b) {
var n = 50,
h = (b - a) / n,
s = f(a) + f(b);
for (var i = 1, x = a; i < n; ++i) s += 2 * f(x += h);
return s * 0.5 * h;
}
var gingery = function() {
var n = 6,
rho = 30 * radians,
cRho = cos(rho),
sRho = sin(rho),
m = d3Geo.geoProjectionMutator(gingeryRaw),
p = m(rho, n),
stream_ = p.stream,
epsilon$$1 = 1e-2,
cr = -cos(epsilon$$1 * radians),
sr = sin(epsilon$$1 * radians);
p.radius = function(_) {
if (!arguments.length) return rho * degrees;
cRho = cos(rho = _ * radians);
sRho = sin(rho);
return m(rho, n);
};
p.lobes = function(_) {
if (!arguments.length) return n;
return m(rho, n = +_);
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart(), sphereStream.lineStart();
for (var i = 0, delta = 2 * pi / n, phi = 0; i < n; ++i, phi -= delta) {
sphereStream.point(atan2(sr * cos(phi), cr) * degrees, asin(sr * sin(phi)) * degrees);
sphereStream.point(atan2(sRho * cos(phi - delta / 2), cRho) * degrees, asin(sRho * sin(phi - delta / 2)) * degrees);
}
sphereStream.lineEnd(), sphereStream.polygonEnd();
};
return rotateStream;
};
return p
.rotate([90, -40])
.scale(91.7095)
.clipAngle(180 - 1e-3);
};
var ginzburgPolyconicRaw = function(a, b, c, d, e, f, g, h) {
if (arguments.length < 8) h = 0;
function forward(lambda, phi) {
if (!phi) return [a * lambda / pi, 0];
var phi2 = phi * phi,
xB = a + phi2 * (b + phi2 * (c + phi2 * d)),
yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)),
m = (xB * xB + yB * yB) / (2 * yB),
alpha = lambda * asin(xB / m) / pi;
return [m * sin(alpha), phi * (1 + phi2 * h) + m * (1 - cos(alpha))];
}
forward.invert = function(x, y) {
var lambda = pi * x / a,
phi = y,
deltaLambda, deltaPhi, i = 50;
do {
var phi2 = phi * phi,
xB = a + phi2 * (b + phi2 * (c + phi2 * d)),
yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)),
p = xB * xB + yB * yB,
q = 2 * yB,
m = p / q,
m2 = m * m,
dAlphadLambda = asin(xB / m) / pi,
alpha = lambda * dAlphadLambda,
xB2 = xB * xB,
dxBdPhi = (2 * b + phi2 * (4 * c + phi2 * 6 * d)) * phi,
dyBdPhi = e + phi2 * (3 * f + phi2 * 5 * g),
dpdPhi = 2 * (xB * dxBdPhi + yB * (dyBdPhi - 1)),
dqdPhi = 2 * (dyBdPhi - 1),
dmdPhi = (dpdPhi * q - p * dqdPhi) / (q * q),
cosAlpha = cos(alpha),
sinAlpha = sin(alpha),
mcosAlpha = m * cosAlpha,
msinAlpha = m * sinAlpha,
dAlphadPhi = ((lambda / pi) * (1 / sqrt(1 - xB2 / m2)) * (dxBdPhi * m - xB * dmdPhi)) / m2,
fx = msinAlpha - x,
fy = phi * (1 + phi2 * h) + m - mcosAlpha - y,
deltaxDeltaPhi = dmdPhi * sinAlpha + mcosAlpha * dAlphadPhi,
deltaxDeltaLambda = mcosAlpha * dAlphadLambda,
deltayDeltaPhi = 1 + dmdPhi - (dmdPhi * cosAlpha - msinAlpha * dAlphadPhi),
deltayDeltaLambda = msinAlpha * dAlphadLambda,
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda;
if (!denominator) break;
lambda -= deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator;
phi -= deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0);
return [lambda, phi];
};
return forward;
};
var ginzburg4Raw = ginzburgPolyconicRaw(2.8284, -1.6988, 0.75432, -0.18071, 1.76003, -0.38914, 0.042555);
var ginzburg4 = function() {
return d3Geo.geoProjection(ginzburg4Raw)
.scale(149.995);
};
var ginzburg5Raw = ginzburgPolyconicRaw(2.583819, -0.835827, 0.170354, -0.038094, 1.543313, -0.411435,0.082742);
var ginzburg5 = function() {
return d3Geo.geoProjection(ginzburg5Raw)
.scale(153.93);
};
var ginzburg6Raw = ginzburgPolyconicRaw(5 / 6 * pi, -0.62636, -0.0344, 0, 1.3493, -0.05524, 0, 0.045);
var ginzburg6 = function() {
return d3Geo.geoProjection(ginzburg6Raw)
.scale(130.945);
};
function ginzburg8Raw(lambda, phi) {
var lambda2 = lambda * lambda,
phi2 = phi * phi;
return [
lambda * (1 - 0.162388 * phi2) * (0.87 - 0.000952426 * lambda2 * lambda2),
phi * (1 + phi2 / 12)
];
}
ginzburg8Raw.invert = function(x, y) {
var lambda = x,
phi = y,
i = 50, delta;
do {
var phi2 = phi * phi;
phi -= delta = (phi * (1 + phi2 / 12) - y) / (1 + phi2 / 4);
} while (abs(delta) > epsilon && --i > 0);
i = 50;
x /= 1 -0.162388 * phi2;
do {
var lambda4 = (lambda4 = lambda * lambda) * lambda4;
lambda -= delta = (lambda * (0.87 - 0.000952426 * lambda4) - x) / (0.87 - 0.00476213 * lambda4);
} while (abs(delta) > epsilon && --i > 0);
return [lambda, phi];
};
var ginzburg8 = function() {
return d3Geo.geoProjection(ginzburg8Raw)
.scale(131.747);
};
var ginzburg9Raw = ginzburgPolyconicRaw(2.6516, -0.76534, 0.19123, -0.047094, 1.36289, -0.13965,0.031762);
var ginzburg9 = function() {
return d3Geo.geoProjection(ginzburg9Raw)
.scale(131.087);
};
var squareRaw = function(project) {
var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0];
function projectSquare(lambda, phi) {
var s = lambda > 0 ? -0.5 : 0.5,
point = project(lambda + s * pi, phi);
point[0] -= s * dx;
return point;
}
if (project.invert) projectSquare.invert = function(x, y) {
var s = x > 0 ? -0.5 : 0.5,
location = project.invert(x + s * dx, y),
lambda = location[0] - s * pi;
if (lambda < -pi) lambda += 2 * pi;
else if (lambda > pi) lambda -= 2 * pi;
location[0] = lambda;
return location;
};
return projectSquare;
};
function gringortenRaw(lambda, phi) {
var sLambda = sign(lambda),
sPhi = sign(phi),
cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(sPhi * phi);
lambda = abs(atan2(y, z));
phi = asin(x);
if (abs(lambda - halfPi) > epsilon) lambda %= halfPi;
var point = gringortenHexadecant(lambda > pi / 4 ? halfPi - lambda : lambda, phi);
if (lambda > pi / 4) z = point[0], point[0] = -point[1], point[1] = -z;
return (point[0] *= sLambda, point[1] *= -sPhi, point);
}
gringortenRaw.invert = function(x, y) {
var sx = sign(x),
sy = sign(y),
x0 = -sx * x,
y0 = -sy * y,
t = y0 / x0 < 1,
p = gringortenHexadecantInvert(t ? y0 : x0, t ? x0 : y0),
lambda = p[0],
phi = p[1],
cosPhi = cos(phi);
if (t) lambda = -halfPi - lambda;
return [sx * (atan2(sin(lambda) * cosPhi, -sin(phi)) + pi), sy * asin(cos(lambda) * cosPhi)];
};
function gringortenHexadecant(lambda, phi) {
if (phi === halfPi) return [0, 0];
var sinPhi = sin(phi),
r = sinPhi * sinPhi,
r2 = r * r,
j = 1 + r2,
k = 1 + 3 * r2,
q = 1 - r2,
z = asin(1 / sqrt(j)),
v = q + r * j * z,
p2 = (1 - sinPhi) / v,
p = sqrt(p2),
a2 = p2 * j,
a = sqrt(a2),
h = p * q,
x,
i;
if (lambda === 0) return [0, -(h + r * a)];
var cosPhi = cos(phi),
secPhi = 1 / cosPhi,
drdPhi = 2 * sinPhi * cosPhi,
dvdPhi = (-3 * r + z * k) * drdPhi,
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
dpdPhi = (0.5 * dp2dPhi) / p,
dhdPhi = q * dpdPhi - 2 * r * p * drdPhi,
dra2dPhi = r * j * dp2dPhi + p2 * k * drdPhi,
mu = -secPhi * drdPhi,
nu = -secPhi * dra2dPhi,
zeta = -2 * secPhi * dhdPhi,
lambda1 = 4 * lambda / pi,
delta;
// Slower but accurate bisection method.
if (lambda > 0.222 * pi || phi < pi / 4 && lambda > 0.175 * pi) {
x = (h + r * sqrt(a2 * (1 + r2) - h * h)) / (1 + r2);
if (lambda > pi / 4) return [x, x];
var x1 = x, x0 = 0.5 * x;
x = 0.5 * (x0 + x1), i = 50;
do {
var g = sqrt(a2 - x * x),
f = (x * (zeta + mu * g) + nu * asin(x / a)) - lambda1;
if (!f) break;
if (f < 0) x0 = x;
else x1 = x;
x = 0.5 * (x0 + x1);
} while (abs(x1 - x0) > epsilon && --i > 0);
}
// Newton-Raphson.
else {
x = epsilon, i = 25;
do {
var x2 = x * x,
g2 = sqrt(a2 - x2),
zetaMug = zeta + mu * g2,
f2 = x * zetaMug + nu * asin(x / a) - lambda1,
df = zetaMug + (nu - mu * x2) / g2;
x -= delta = g2 ? f2 / df : 0;
} while (abs(delta) > epsilon && --i > 0);
}
return [x, -h - r * sqrt(a2 - x * x)];
}
function gringortenHexadecantInvert(x, y) {
var x0 = 0,
x1 = 1,
r = 0.5,
i = 50;
while (true) {
var r2 = r * r,
sinPhi = sqrt(r),
z = asin(1 / sqrt(1 + r2)),
v = (1 - r2) + r * (1 + r2) * z,
p2 = (1 - sinPhi) / v,
p = sqrt(p2),
a2 = p2 * (1 + r2),
h = p * (1 - r2),
g2 = a2 - x * x,
g = sqrt(g2),
y0 = y + h + r * g;
if (abs(x1 - x0) < epsilon2 || --i === 0 || y0 === 0) break;
if (y0 > 0) x0 = r;
else x1 = r;
r = 0.5 * (x0 + x1);
}
if (!i) return null;
var phi = asin(sinPhi),
cosPhi = cos(phi),
secPhi = 1 / cosPhi,
drdPhi = 2 * sinPhi * cosPhi,
dvdPhi = (-3 * r + z * (1 + 3 * r2)) * drdPhi,
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
dpdPhi = 0.5 * dp2dPhi / p,
dhdPhi = (1 - r2) * dpdPhi - 2 * r * p * drdPhi,
zeta = -2 * secPhi * dhdPhi,
mu = -secPhi * drdPhi,
nu = -secPhi * (r * (1 + r2) * dp2dPhi + p2 * (1 + 3 * r2) * drdPhi);
return [pi / 4 * (x * (zeta + mu * g) + nu * asin(x / sqrt(a2))), phi];
}
var gringorten = function() {
return d3Geo.geoProjection(squareRaw(gringortenRaw))
.scale(239.75);
};
// Returns [sn, cn, dn](u + iv|m).
function ellipticJi(u, v, m) {
var a, b, c;
if (!u) {
b = ellipticJ(v, 1 - m);
return [
[0, b[0] / b[1]],
[1 / b[1], 0],
[b[2] / b[1], 0]
];
}
a = ellipticJ(u, m);
if (!v) return [[a[0], 0], [a[1], 0], [a[2], 0]];
b = ellipticJ(v, 1 - m);
c = b[1] * b[1] + m * a[0] * a[0] * b[0] * b[0];
return [
[a[0] * b[2] / c, a[1] * a[2] * b[0] * b[1] / c],
[a[1] * b[1] / c, -a[0] * a[2] * b[0] * b[2] / c],
[a[2] * b[1] * b[2] / c, -m * a[0] * a[1] * b[0] / c]
];
}
// Returns [sn, cn, dn, ph](u|m).
function ellipticJ(u, m) {
var ai, b, phi, t, twon;
if (m < epsilon) {
t = sin(u);
b = cos(u);
ai = m * (u - t * b) / 4;
return [
t - ai * b,
b + ai * t,
1 - m * t * t / 2,
u - ai
];
}
if (m >= 1 - epsilon) {
ai = (1 - m) / 4;
b = cosh(u);
t = tanh(u);
phi = 1 / b;
twon = b * sinh(u);
return [
t + ai * (twon - u) / (b * b),
phi - ai * t * phi * (twon - u),
phi + ai * t * phi * (twon + u),
2 * atan(exp(u)) - halfPi + ai * (twon - u) / b
];
}
var a = [1, 0, 0, 0, 0, 0, 0, 0, 0],
c = [sqrt(m), 0, 0, 0, 0, 0, 0, 0, 0],
i = 0;
b = sqrt(1 - m);
twon = 1;
while (abs(c[i] / a[i]) > epsilon && i < 8) {
ai = a[i++];
c[i] = (ai - b) / 2;
a[i] = (ai + b) / 2;
b = sqrt(ai * b);
twon *= 2;
}
phi = twon * a[i] * u;
do {
t = c[i] * sin(b = phi) / a[i];
phi = (asin(t) + phi) / 2;
} while (--i);
return [sin(phi), t = cos(phi), t / cos(phi - b), phi];
}
// Calculate F(phi+iPsi|m).
// See Abramowitz and Stegun, 17.4.11.
function ellipticFi(phi, psi, m) {
var r = abs(phi),
i = abs(psi),
sinhPsi = sinh(i);
if (r) {
var cscPhi = 1 / sin(r),
cotPhi2 = 1 / (tan(r) * tan(r)),
b = -(cotPhi2 + m * (sinhPsi * sinhPsi * cscPhi * cscPhi) - 1 + m),
c = (m - 1) * cotPhi2,
cotLambda2 = (-b + sqrt(b * b - 4 * c)) / 2;
return [
ellipticF(atan(1 / sqrt(cotLambda2)), m) * sign(phi),
ellipticF(atan(sqrt((cotLambda2 / cotPhi2 - 1) / m)), 1 - m) * sign(psi)
];
}
return [
0,
ellipticF(atan(sinhPsi), 1 - m) * sign(psi)
];
}
// Calculate F(phi|m) where m = k² = sin²α.
// See Abramowitz and Stegun, 17.6.7.
function ellipticF(phi, m) {
if (!m) return phi;
if (m === 1) return log(tan(phi / 2 + quarterPi));
var a = 1,
b = sqrt(1 - m),
c = sqrt(m);
for (var i = 0; abs(c) > epsilon; i++) {
if (phi % pi) {
var dPhi = atan(b * tan(phi) / a);
if (dPhi < 0) dPhi += pi;
phi += dPhi + ~~(phi / pi) * pi;
} else phi += phi;
c = (a + b) / 2;
b = sqrt(a * b);
c = ((a = c) - b) / 2;
}
return phi / (pow(2, i) * a);
}
function guyouRaw(lambda, phi) {
var k_ = (sqrt2 - 1) / (sqrt2 + 1),
k = sqrt(1 - k_ * k_),
K = ellipticF(halfPi, k * k),
f = -1,
psi = log(tan(pi / 4 + abs(phi) / 2)),
r = exp(f * psi) / sqrt(k_),
at = guyouComplexAtan(r * cos(f * lambda), r * sin(f * lambda)),
t = ellipticFi(at[0], at[1], k * k);
return [-t[1], (phi >= 0 ? 1 : -1) * (0.5 * K - t[0])];
}
function guyouComplexAtan(x, y) {
var x2 = x * x,
y_1 = y + 1,
t = 1 - x2 - y * y;
return [
0.5 * ((x >= 0 ? halfPi : -halfPi) - atan2(t, 2 * x)),
-0.25 * log(t * t + 4 * x2) +0.5 * log(y_1 * y_1 + x2)
];
}
function guyouComplexDivide(a, b) {
var denominator = b[0] * b[0] + b[1] * b[1];
return [
(a[0] * b[0] + a[1] * b[1]) / denominator,
(a[1] * b[0] - a[0] * b[1]) / denominator
];
}
guyouRaw.invert = function(x, y) {
var k_ = (sqrt2 - 1) / (sqrt2 + 1),
k = sqrt(1 - k_ * k_),
K = ellipticF(halfPi, k * k),
f = -1,
j = ellipticJi(0.5 * K - y, -x, k * k),
tn = guyouComplexDivide(j[0], j[1]),
lambda = atan2(tn[1], tn[0]) / f;
return [
lambda,
2 * atan(exp(0.5 / f * log(k_ * tn[0] * tn[0] + k_ * tn[1] * tn[1]))) - halfPi
];
};
var guyou = function() {
return d3Geo.geoProjection(squareRaw(guyouRaw))
.scale(151.496);
};
function hammerRaw(A, B) {
if (arguments.length < 2) B = A;
if (B === 1) return d3Geo.geoAzimuthalEqualAreaRaw;
if (B === Infinity) return hammerQuarticAuthalicRaw;
function forward(lambda, phi) {
var coordinates = d3Geo.geoAzimuthalEqualAreaRaw(lambda / B, phi);
coordinates[0] *= A;
return coordinates;
}
forward.invert = function(x, y) {
var coordinates = d3Geo.geoAzimuthalEqualAreaRaw.invert(x / A, y);
coordinates[0] *= B;
return coordinates;
};
return forward;
}
function hammerQuarticAuthalicRaw(lambda, phi) {
return [
lambda * cos(phi) / cos(phi /= 2),
2 * sin(phi)
];
}
hammerQuarticAuthalicRaw.invert = function(x, y) {
var phi = 2 * asin(y / 2);
return [
x * cos(phi / 2) / cos(phi),
phi
];
};
var hammer = function() {
var B = 2,
m = d3Geo.geoProjectionMutator(hammerRaw),
p = m(B);
p.coefficient = function(_) {
if (!arguments.length) return B;
return m(B = +_);
};
return p
.scale(169.529);
};
function hammerRetroazimuthalRaw(phi0) {
var sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0),
rotate = hammerRetroazimuthalRotation(phi0);
rotate.invert = hammerRetroazimuthalRotation(-phi0);
function forward(lambda, phi) {
var p = rotate(lambda, phi);
lambda = p[0], phi = p[1];
var sinPhi = sin(phi),
cosPhi = cos(phi),
cosLambda = cos(lambda),
z = acos(sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosLambda),
sinz = sin(z),
K = abs(sinz) > epsilon ? z / sinz : 1;
return [
K * cosPhi0 * sin(lambda),
(abs(lambda) > halfPi ? K : -K) // rotate for back hemisphere
* (sinPhi0 * cosPhi - cosPhi0 * sinPhi * cosLambda)
];
}
forward.invert = function(x, y) {
var rho = sqrt(x * x + y * y),
sinz = -sin(rho),
cosz = cos(rho),
a = rho * cosz,
b = -y * sinz,
c = rho * sinPhi0,
d = sqrt(a * a + b * b - c * c),
phi = atan2(a * c + b * d, b * c - a * d),
lambda = (rho > halfPi ? -1 : 1) * atan2(x * sinz, rho * cos(phi) * cosz + y * sin(phi) * sinz);
return rotate.invert(lambda, phi);
};
return forward;
}
// Latitudinal rotation by phi0.
// Temporary hack until D3 supports arbitrary small-circle clipping origins.
function hammerRetroazimuthalRotation(phi0) {
var sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0);
return function(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi);
return [
atan2(y, x * cosPhi0 - z * sinPhi0),
asin(z * cosPhi0 + x * sinPhi0)
];
};
}
var hammerRetroazimuthal = function() {
var phi0 = 0,
m = d3Geo.geoProjectionMutator(hammerRetroazimuthalRaw),
p = m(phi0),
rotate_ = p.rotate,
stream_ = p.stream,
circle = d3Geo.geoCircle();
p.parallel = function(_) {
if (!arguments.length) return phi0 * degrees;
var r = p.rotate();
return m(phi0 = _ * radians).rotate(r);
};
// Temporary hack; see hammerRetroazimuthalRotation.
p.rotate = function(_) {
if (!arguments.length) return (_ = rotate_.call(p), _[1] += phi0 * degrees, _);
rotate_.call(p, [_[0], _[1] - phi0 * degrees]);
circle.center([-_[0], -_[1]]);
return p;
};
p.stream = function(stream) {
stream = stream_(stream);
stream.sphere = function() {
stream.polygonStart();
var epsilon$$1 = 1e-2,
ring = circle.radius(90 - epsilon$$1)().coordinates[0],
n = ring.length - 1,
i = -1,
p;
stream.lineStart();
while (++i < n) stream.point((p = ring[i])[0], p[1]);
stream.lineEnd();
ring = circle.radius(90 + epsilon$$1)().coordinates[0];
n = ring.length - 1;
stream.lineStart();
while (--i >= 0) stream.point((p = ring[i])[0], p[1]);
stream.lineEnd();
stream.polygonEnd();
};
return stream;
};
return p
.scale(79.4187)
.parallel(45)
.clipAngle(180 - 1e-3);
};
var healpixParallel = 41 + 48 / 36 + 37 / 3600;
var healpixLambert = cylindricalEqualAreaRaw(0);
function healpixRaw(H) {
var phi0 = healpixParallel * radians,
dx = collignonRaw(pi, phi0)[0] - collignonRaw(-pi, phi0)[0],
y0 = healpixLambert(0, phi0)[1],
y1 = collignonRaw(0, phi0)[1],
dy1 = sqrtPi - y1,
k = tau / H,
w = 4 / tau,
h = y0 + (dy1 * dy1 * 4) / tau;
function forward(lambda, phi) {
var point,
phi2 = abs(phi);
if (phi2 > phi0) {
var i = min(H - 1, max(0, floor((lambda + pi) / k)));
lambda += pi * (H - 1) / H - i * k;
point = collignonRaw(lambda, phi2);
point[0] = point[0] * tau / dx - tau * (H - 1) / (2 * H) + i * tau / H;
point[1] = y0 + (point[1] - y1) * 4 * dy1 / tau;
if (phi < 0) point[1] = -point[1];
} else {
point = healpixLambert(lambda, phi);
}
point[0] *= w, point[1] /= h;
return point;
}
forward.invert = function(x, y) {
x /= w, y *= h;
var y2 = abs(y);
if (y2 > y0) {
var i = min(H - 1, max(0, floor((x + pi) / k)));
x = (x + pi * (H - 1) / H - i * k) * dx / tau;
var point = collignonRaw.invert(x, 0.25 * (y2 - y0) * tau / dy1 + y1);
point[0] -= pi * (H - 1) / H - i * k;
if (y < 0) point[1] = -point[1];
return point;
}
return healpixLambert.invert(x, y);
};
return forward;
}
function sphere(step) {
return {
type: "Polygon",
coordinates: [
d3Array.range(-180, 180 + step / 2, step).map(function(x, i) { return [x, i & 1 ? 90 - 1e-6 : healpixParallel]; })
.concat(d3Array.range(180, -180 - step / 2, -step).map(function(x, i) { return [x, i & 1 ? -90 + 1e-6 : -healpixParallel]; }))
]
};
}
var healpix = function() {
var H = 4,
m = d3Geo.geoProjectionMutator(healpixRaw),
p = m(H),
stream_ = p.stream;
p.lobes = function(_) {
return arguments.length ? m(H = +_) : H;
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() { d3Geo.geoStream(sphere(180 / H), sphereStream); };
return rotateStream;
};
return p
.scale(239.75);
};
function hillRaw(K) {
var L = 1 + K,
sinBt = sin(1 / L),
Bt = asin(sinBt),
A = 2 * sqrt(pi / (B = pi + 4 * Bt * L)),
B,
rho0 = 0.5 * A * (L + sqrt(K * (2 + K))),
K2 = K * K,
L2 = L * L;
function forward(lambda, phi) {
var t = 1 - sin(phi),
rho,
omega;
if (t && t < 2) {
var theta = halfPi - phi, i = 25, delta;
do {
var sinTheta = sin(theta),
cosTheta = cos(theta),
Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta),
C = 1 + L2 - 2 * L * cosTheta;
theta -= delta = (theta - K2 * Bt - L * sinTheta + C * Bt_Bt1 -0.5 * t * B) / (2 * L * sinTheta * Bt_Bt1);
} while (abs(delta) > epsilon2 && --i > 0);
rho = A * sqrt(C);
omega = lambda * Bt_Bt1 / pi;
} else {
rho = A * (K + t);
omega = lambda * Bt / pi;
}
return [
rho * sin(omega),
rho0 - rho * cos(omega)
];
}
forward.invert = function(x, y) {
var rho2 = x * x + (y -= rho0) * y,
cosTheta = (1 + L2 - rho2 / (A * A)) / (2 * L),
theta = acos(cosTheta),
sinTheta = sin(theta),
Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta);
return [
asin(x / sqrt(rho2)) * pi / Bt_Bt1,
asin(1 - 2 * (theta - K2 * Bt - L * sinTheta + (1 + L2 - 2 * L * cosTheta) * Bt_Bt1) / B)
];
};
return forward;
}
var hill = function() {
var K = 1,
m = d3Geo.geoProjectionMutator(hillRaw),
p = m(K);
p.ratio = function(_) {
return arguments.length ? m(K = +_) : K;
};
return p
.scale(167.774)
.center([0, 18.67]);
};
var sinuMollweidePhi = 0.7109889596207567;
var sinuMollweideY = 0.0528035274542;
function sinuMollweideRaw(lambda, phi) {
return phi > -sinuMollweidePhi
? (lambda = mollweideRaw(lambda, phi), lambda[1] += sinuMollweideY, lambda)
: sinusoidalRaw(lambda, phi);
}
sinuMollweideRaw.invert = function(x, y) {
return y > -sinuMollweidePhi
? mollweideRaw.invert(x, y - sinuMollweideY)
: sinusoidalRaw.invert(x, y);
};
var sinuMollweide = function() {
return d3Geo.geoProjection(sinuMollweideRaw)
.rotate([-20, -55])
.scale(164.263)
.center([0, -5.4036]);
};
function homolosineRaw(lambda, phi) {
return abs(phi) > sinuMollweidePhi
? (lambda = mollweideRaw(lambda, phi), lambda[1] -= phi > 0 ? sinuMollweideY : -sinuMollweideY, lambda)
: sinusoidalRaw(lambda, phi);
}
homolosineRaw.invert = function(x, y) {
return abs(y) > sinuMollweidePhi
? mollweideRaw.invert(x, y + (y > 0 ? sinuMollweideY : -sinuMollweideY))
: sinusoidalRaw.invert(x, y);
};
var homolosine = function() {
return d3Geo.geoProjection(homolosineRaw)
.scale(152.63);
};
function pointEqual(a, b) {
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
}
function interpolateLine(coordinates, m) {
var i = -1,
n = coordinates.length,
p0 = coordinates[0],
p1,
dx,
dy,
resampled = [];
while (++i < n) {
p1 = coordinates[i];
dx = (p1[0] - p0[0]) / m;
dy = (p1[1] - p0[1]) / m;
for (var j = 0; j < m; ++j) resampled.push([p0[0] + j * dx, p0[1] + j * dy]);
p0 = p1;
}
resampled.push(p1);
return resampled;
}
function interpolateSphere(lobes) {
var coordinates = [],
lobe,
lambda0, phi0, phi1,
lambda2, phi2,
i, n = lobes[0].length;
// Northern Hemisphere
for (i = 0; i < n; ++i) {
lobe = lobes[0][i];
lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1];
lambda2 = lobe[2][0], phi2 = lobe[2][1];
coordinates.push(interpolateLine([
[lambda0 + epsilon, phi0 + epsilon],
[lambda0 + epsilon, phi1 - epsilon],
[lambda2 - epsilon, phi1 - epsilon],
[lambda2 - epsilon, phi2 + epsilon]
], 30));
}
// Southern Hemisphere
for (i = lobes[1].length - 1; i >= 0; --i) {
lobe = lobes[1][i];
lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1];
lambda2 = lobe[2][0], phi2 = lobe[2][1];
coordinates.push(interpolateLine([
[lambda2 - epsilon, phi2 - epsilon],
[lambda2 - epsilon, phi1 + epsilon],
[lambda0 + epsilon, phi1 + epsilon],
[lambda0 + epsilon, phi0 - epsilon]
], 30));
}
return {
type: "Polygon",
coordinates: [d3Array.merge(coordinates)]
};
}
var interrupt = function(project, lobes) {
var sphere = interpolateSphere(lobes);
lobes = lobes.map(function(lobe) {
return lobe.map(function(l) {
return [
[l[0][0] * radians, l[0][1] * radians],
[l[1][0] * radians, l[1][1] * radians],
[l[2][0] * radians, l[2][1] * radians]
];
});
});
var bounds = lobes.map(function(lobe) {
return lobe.map(function(l) {
var x0 = project(l[0][0], l[0][1])[0],
x1 = project(l[2][0], l[2][1])[0],
y0 = project(l[1][0], l[0][1])[1],
y1 = project(l[1][0], l[1][1])[1],
t;
if (y0 > y1) t = y0, y0 = y1, y1 = t;
return [[x0, y0], [x1, y1]];
});
});
function forward(lambda, phi) {
var sign$$1 = phi < 0 ? -1 : +1, lobe = lobes[+(phi < 0)];
for (var i = 0, n = lobe.length - 1; i < n && lambda > lobe[i][2][0]; ++i);
var p = project(lambda - lobe[i][1][0], phi);
p[0] += project(lobe[i][1][0], sign$$1 * phi > sign$$1 * lobe[i][0][1] ? lobe[i][0][1] : phi)[0];
return p;
}
// Assumes mutually exclusive bounding boxes for lobes.
if (project.invert) forward.invert = function(x, y) {
var bound = bounds[+(y < 0)], lobe = lobes[+(y < 0)];
for (var i = 0, n = bound.length; i < n; ++i) {
var b = bound[i];
if (b[0][0] <= x && x < b[1][0] && b[0][1] <= y && y < b[1][1]) {
var p = project.invert(x - project(lobe[i][1][0], 0)[0], y);
p[0] += lobe[i][1][0];
return pointEqual(forward(p[0], p[1]), [x, y]) ? p : null;
}
}
};
var p = d3Geo.geoProjection(forward),
stream_ = p.stream;
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() { d3Geo.geoStream(sphere, sphereStream); };
return rotateStream;
};
return p;
};
var lobes = [[ // northern hemisphere
[[-180, 0], [-100, 90], [ -40, 0]],
[[ -40, 0], [ 30, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-160, -90], [-100, 0]],
[[-100, 0], [ -60, -90], [ -20, 0]],
[[ -20, 0], [ 20, -90], [ 80, 0]],
[[ 80, 0], [ 140, -90], [ 180, 0]]
]];
var boggs$1 = function() {
return interrupt(boggsRaw, lobes)
.scale(160.857);
};
var lobes$1 = [[ // northern hemisphere
[[-180, 0], [-100, 90], [ -40, 0]],
[[ -40, 0], [ 30, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-160, -90], [-100, 0]],
[[-100, 0], [ -60, -90], [ -20, 0]],
[[ -20, 0], [ 20, -90], [ 80, 0]],
[[ 80, 0], [ 140, -90], [ 180, 0]]
]];
var homolosine$1 = function() {
return interrupt(homolosineRaw, lobes$1)
.scale(152.63);
};
var lobes$2 = [[ // northern hemisphere
[[-180, 0], [-100, 90], [ -40, 0]],
[[ -40, 0], [ 30, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-160, -90], [-100, 0]],
[[-100, 0], [ -60, -90], [ -20, 0]],
[[ -20, 0], [ 20, -90], [ 80, 0]],
[[ 80, 0], [ 140, -90], [ 180, 0]]
]];
var mollweide$1 = function() {
return interrupt(mollweideRaw, lobes$2)
.scale(169.529);
};
var lobes$3 = [[ // northern hemisphere
[[-180, 0], [ -90, 90], [ 0, 0]],
[[ 0, 0], [ 90, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [ -90, -90], [ 0, 0]],
[[ 0, 0], [ 90, -90], [ 180, 0]]
]];
var mollweideHemispheres = function() {
return interrupt(mollweideRaw, lobes$3)
.scale(169.529)
.rotate([20, 0]);
};
var lobes$4 = [[ // northern hemisphere
[[-180, 35], [ -30, 90], [ 0, 35]],
[[ 0, 35], [ 30, 90], [ 180, 35]]
], [ // southern hemisphere
[[-180, -10], [-102, -90], [ -65, -10]],
[[ -65, -10], [ 5, -90], [ 77, -10]],
[[ 77, -10], [ 103, -90], [ 180, -10]]
]];
var sinuMollweide$1 = function() {
return interrupt(sinuMollweideRaw, lobes$4)
.rotate([-20, -55])
.scale(164.263)
.center([0, -5.4036]);
};
var lobes$5 = [[ // northern hemisphere
[[-180, 0], [-110, 90], [ -40, 0]],
[[ -40, 0], [ 0, 90], [ 40, 0]],
[[ 40, 0], [ 110, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-110, -90], [ -40, 0]],
[[ -40, 0], [ 0, -90], [ 40, 0]],
[[ 40, 0], [ 110, -90], [ 180, 0]]
]];
var sinusoidal$1 = function() {
return interrupt(sinusoidalRaw, lobes$5)
.scale(152.63)
.rotate([-20, 0]);
};
function kavrayskiy7Raw(lambda, phi) {
return [3 / tau * lambda * sqrt(pi * pi / 3 - phi * phi), phi];
}
kavrayskiy7Raw.invert = function(x, y) {
return [tau / 3 * x / sqrt(pi * pi / 3 - y * y), y];
};
var kavrayskiy7 = function() {
return d3Geo.geoProjection(kavrayskiy7Raw)
.scale(158.837);
};
function lagrangeRaw(n) {
function forward(lambda, phi) {
if (abs(abs(phi) - halfPi) < epsilon) return [0, phi < 0 ? -2 : 2];
var sinPhi = sin(phi),
v = pow((1 + sinPhi) / (1 - sinPhi), n / 2),
c = 0.5 * (v + 1 / v) + cos(lambda *= n);
return [
2 * sin(lambda) / c,
(v - 1 / v) / c
];
}
forward.invert = function(x, y) {
var y0 = abs(y);
if (abs(y0 - 2) < epsilon) return x ? null : [0, sign(y) * halfPi];
if (y0 > 2) return null;
x /= 2, y /= 2;
var x2 = x * x,
y2 = y * y,
t = 2 * y / (1 + x2 + y2); // tanh(nPhi)
t = pow((1 + t) / (1 - t), 1 / n);
return [
atan2(2 * x, 1 - x2 - y2) / n,
asin((t - 1) / (t + 1))
];
};
return forward;
}
var lagrange = function() {
var n = 0.5,
m = d3Geo.geoProjectionMutator(lagrangeRaw),
p = m(n);
p.spacing = function(_) {
return arguments.length ? m(n = +_) : n;
};
return p
.scale(124.75);
};
var pi_sqrt2 = pi / sqrt2;
function larriveeRaw(lambda, phi) {
return [
lambda * (1 + sqrt(cos(phi))) / 2,
phi / (cos(phi / 2) * cos(lambda / 6))
];
}
larriveeRaw.invert = function(x, y) {
var x0 = abs(x),
y0 = abs(y),
lambda = epsilon,
phi = halfPi;
if (y0 < pi_sqrt2) phi *= y0 / pi_sqrt2;
else lambda += 6 * acos(pi_sqrt2 / y0);
for (var i = 0; i < 25; i++) {
var sinPhi = sin(phi),
sqrtcosPhi = sqrt(cos(phi)),
sinPhi_2 = sin(phi / 2),
cosPhi_2 = cos(phi / 2),
sinLambda_6 = sin(lambda / 6),
cosLambda_6 = cos(lambda / 6),
f0 = 0.5 * lambda * (1 + sqrtcosPhi) - x0,
f1 = phi / (cosPhi_2 * cosLambda_6) - y0,
df0dPhi = sqrtcosPhi ? -0.25 * lambda * sinPhi / sqrtcosPhi : 0,
df0dLambda = 0.5 * (1 + sqrtcosPhi),
df1dPhi = (1 +0.5 * phi * sinPhi_2 / cosPhi_2) / (cosPhi_2 * cosLambda_6),
df1dLambda = (phi / cosPhi_2) * (sinLambda_6 / 6) / (cosLambda_6 * cosLambda_6),
denom = df0dPhi * df1dLambda - df1dPhi * df0dLambda,
dPhi = (f0 * df1dLambda - f1 * df0dLambda) / denom,
dLambda = (f1 * df0dPhi - f0 * df1dPhi) / denom;
phi -= dPhi;
lambda -= dLambda;
if (abs(dPhi) < epsilon && abs(dLambda) < epsilon) break;
}
return [x < 0 ? -lambda : lambda, y < 0 ? -phi : phi];
};
var larrivee = function() {
return d3Geo.geoProjection(larriveeRaw)
.scale(97.2672);
};
function laskowskiRaw(lambda, phi) {
var lambda2 = lambda * lambda, phi2 = phi * phi;
return [
lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)),
phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032))
];
}
laskowskiRaw.invert = function(x, y) {
var lambda = sign(x) * pi,
phi = y / 2,
i = 50;
do {
var lambda2 = lambda * lambda,
phi2 = phi * phi,
lambdaPhi = lambda * phi,
fx = lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)) - x,
fy = phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032)) - y,
deltaxDeltaLambda = 0.975534 - phi2 * (0.119161 + 3 * lambda2 * 0.0143059 + phi2 * 0.0547009),
deltaxDeltaPhi = -lambdaPhi * (2 * 0.119161 + 4 * 0.0547009 * phi2 + 2 * 0.0143059 * lambda2),
deltayDeltaLambda = lambdaPhi * (2 * 0.0802894 + 4 * 0.000199025 * lambda2 + 2 * -0.02855 * phi2),
deltayDeltaPhi = 1.00384 + lambda2 * (0.0802894 + 0.000199025 * lambda2) + phi2 * (3 * (0.0998909 - 0.02855 * lambda2) - 5 * 0.0491032 * phi2),
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda,
deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator,
deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
lambda -= deltaLambda, phi -= deltaPhi;
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0);
return i && [lambda, phi];
};
var laskowski = function() {
return d3Geo.geoProjection(laskowskiRaw)
.scale(139.98);
};
function littrowRaw(lambda, phi) {
return [
sin(lambda) / cos(phi),
tan(phi) * cos(lambda)
];
}
littrowRaw.invert = function(x, y) {
var x2 = x * x,
y2 = y * y,
y2_1 = y2 + 1,
cosPhi = x
? sqrt1_2 * sqrt((y2_1 - sqrt(x2 * x2 + 2 * x2 * (y2 - 1) + y2_1 * y2_1)) / x2 + 1)
: 1 / sqrt(y2_1);
return [
asin(x * cosPhi),
sign(y) * acos(cosPhi)
];
};
var littrow = function() {
return d3Geo.geoProjection(littrowRaw)
.scale(144.049)
.clipAngle(90 - 1e-3);
};
function loximuthalRaw(phi0) {
var cosPhi0 = cos(phi0),
tanPhi0 = tan(quarterPi + phi0 / 2);
function forward(lambda, phi) {
var y = phi - phi0,
x = abs(y) < epsilon ? lambda * cosPhi0
: abs(x = quarterPi + phi / 2) < epsilon || abs(abs(x) - halfPi) < epsilon
? 0 : lambda * y / log(tan(x) / tanPhi0);
return [x, y];
}
forward.invert = function(x, y) {
var lambda,
phi = y + phi0;
return [
abs(y) < epsilon ? x / cosPhi0
: (abs(lambda = quarterPi + phi / 2) < epsilon || abs(abs(lambda) - halfPi) < epsilon) ? 0
: x * log(tan(lambda) / tanPhi0) / y,
phi
];
};
return forward;
}
var loximuthal = function() {
return parallel1(loximuthalRaw)
.parallel(40)
.scale(158.837);
};
function millerRaw(lambda, phi) {
return [lambda, 1.25 * log(tan(quarterPi + 0.4 * phi))];
}
millerRaw.invert = function(x, y) {
return [x, 2.5 * atan(exp(0.8 * y)) - 0.625 * pi];
};
var miller = function() {
return d3Geo.geoProjection(millerRaw)
.scale(108.318);
};
function modifiedStereographicRaw(C) {
var m = C.length - 1;
function forward(lambda, phi) {
var cosPhi = cos(phi),
k = 2 / (1 + cosPhi * cos(lambda)),
zr = k * cosPhi * sin(lambda),
zi = k * sin(phi),
i = m,
w = C[i],
ar = w[0],
ai = w[1],
t;
while (--i >= 0) {
w = C[i];
ar = w[0] + zr * (t = ar) - zi * ai;
ai = w[1] + zr * ai + zi * t;
}
ar = zr * (t = ar) - zi * ai;
ai = zr * ai + zi * t;
return [ar, ai];
}
forward.invert = function(x, y) {
var i = 20,
zr = x,
zi = y;
do {
var j = m,
w = C[j],
ar = w[0],
ai = w[1],
br = 0,
bi = 0,
t;
while (--j >= 0) {
w = C[j];
br = ar + zr * (t = br) - zi * bi;
bi = ai + zr * bi + zi * t;
ar = w[0] + zr * (t = ar) - zi * ai;
ai = w[1] + zr * ai + zi * t;
}
br = ar + zr * (t = br) - zi * bi;
bi = ai + zr * bi + zi * t;
ar = zr * (t = ar) - zi * ai - x;
ai = zr * ai + zi * t - y;
var denominator = br * br + bi * bi, deltar, deltai;
zr -= deltar = (ar * br + ai * bi) / denominator;
zi -= deltai = (ai * br - ar * bi) / denominator;
} while (abs(deltar) + abs(deltai) > epsilon * epsilon && --i > 0);
if (i) {
var rho = sqrt(zr * zr + zi * zi),
c = 2 * atan(rho * 0.5),
sinc = sin(c);
return [atan2(zr * sinc, rho * cos(c)), rho ? asin(zi * sinc / rho) : 0];
}
};
return forward;
}
var alaska = [[0.9972523, 0], [0.0052513, -0.0041175], [0.0074606, 0.0048125], [-0.0153783, -0.1968253], [0.0636871, -0.1408027], [0.3660976, -0.2937382]];
var gs48 = [[0.98879, 0], [0, 0], [-0.050909, 0], [0, 0], [0.075528, 0]];
var gs50 = [[0.9842990, 0], [0.0211642, 0.0037608], [-0.1036018, -0.0575102], [-0.0329095, -0.0320119], [0.0499471, 0.1223335], [0.0260460, 0.0899805], [0.0007388, -0.1435792], [0.0075848, -0.1334108], [-0.0216473, 0.0776645], [-0.0225161, 0.0853673]];
var miller$1 = [[0.9245, 0], [0, 0], [0.01943, 0]];
var lee = [[0.721316, 0], [0, 0], [-0.00881625, -0.00617325]];
function modifiedStereographicAlaska() {
return modifiedStereographic(alaska, [152, -64])
.scale(1500)
.center([-160.908, 62.4864])
.clipAngle(25);
}
function modifiedStereographicGs48() {
return modifiedStereographic(gs48, [95, -38])
.scale(1000)
.clipAngle(55)
.center([-96.5563, 38.8675]);
}
function modifiedStereographicGs50() {
return modifiedStereographic(gs50, [120, -45])
.scale(359.513)
.clipAngle(55)
.center([-117.474, 53.0628]);
}
function modifiedStereographicMiller() {
return modifiedStereographic(miller$1, [-20, -18])
.scale(209.091)
.center([20, 16.7214])
.clipAngle(82);
}
function modifiedStereographicLee() {
return modifiedStereographic(lee, [165, 10])
.scale(250)
.clipAngle(130)
.center([-165, -10]);
}
function modifiedStereographic(coefficients, rotate) {
var p = d3Geo.geoProjection(modifiedStereographicRaw(coefficients)).rotate(rotate).clipAngle(90),
r = d3Geo.geoRotation(rotate),
center = p.center;
delete p.rotate;
p.center = function(_) {
return arguments.length ? center(r(_)) : r.invert(center());
};
return p;
}
var sqrt6 = sqrt(6);
var sqrt7 = sqrt(7);
function mtFlatPolarParabolicRaw(lambda, phi) {
var theta = asin(7 * sin(phi) / (3 * sqrt6));
return [
sqrt6 * lambda * (2 * cos(2 * theta / 3) - 1) / sqrt7,
9 * sin(theta / 3) / sqrt7
];
}
mtFlatPolarParabolicRaw.invert = function(x, y) {
var theta = 3 * asin(y * sqrt7 / 9);
return [
x * sqrt7 / (sqrt6 * (2 * cos(2 * theta / 3) - 1)),
asin(sin(theta) * 3 * sqrt6 / 7)
];
};
var mtFlatPolarParabolic = function() {
return d3Geo.geoProjection(mtFlatPolarParabolicRaw)
.scale(164.859);
};
function mtFlatPolarQuarticRaw(lambda, phi) {
var k = (1 + sqrt1_2) * sin(phi),
theta = phi;
for (var i = 0, delta; i < 25; i++) {
theta -= delta = (sin(theta / 2) + sin(theta) - k) / (0.5 * cos(theta / 2) + cos(theta));
if (abs(delta) < epsilon) break;
}
return [
lambda * (1 + 2 * cos(theta) / cos(theta / 2)) / (3 * sqrt2),
2 * sqrt(3) * sin(theta / 2) / sqrt(2 + sqrt2)
];
}
mtFlatPolarQuarticRaw.invert = function(x, y) {
var sinTheta_2 = y * sqrt(2 + sqrt2) / (2 * sqrt(3)),
theta = 2 * asin(sinTheta_2);
return [
3 * sqrt2 * x / (1 + 2 * cos(theta) / cos(theta / 2)),
asin((sinTheta_2 + sin(theta)) / (1 + sqrt1_2))
];
};
var mtFlatPolarQuartic = function() {
return d3Geo.geoProjection(mtFlatPolarQuarticRaw)
.scale(188.209);
};
function mtFlatPolarSinusoidalRaw(lambda, phi) {
var A = sqrt(6 / (4 + pi)),
k = (1 + pi / 4) * sin(phi),
theta = phi / 2;
for (var i = 0, delta; i < 25; i++) {
theta -= delta = (theta / 2 + sin(theta) - k) / (0.5 + cos(theta));
if (abs(delta) < epsilon) break;
}
return [
A * (0.5 + cos(theta)) * lambda / 1.5,
A * theta
];
}
mtFlatPolarSinusoidalRaw.invert = function(x, y) {
var A = sqrt(6 / (4 + pi)),
theta = y / A;
if (abs(abs(theta) - halfPi) < epsilon) theta = theta < 0 ? -halfPi : halfPi;
return [
1.5 * x / (A * (0.5 + cos(theta))),
asin((theta / 2 + sin(theta)) / (1 + pi / 4))
];
};
var mtFlatPolarSinusoidal = function() {
return d3Geo.geoProjection(mtFlatPolarSinusoidalRaw)
.scale(166.518);
};
function naturalEarthRaw(lambda, phi) {
var phi2 = phi * phi, phi4 = phi2 * phi2;
return [
lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))),
phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4)))
];
}
naturalEarthRaw.invert = function(x, y) {
var phi = y, i = 25, delta;
do {
var phi2 = phi * phi, phi4 = phi2 * phi2;
phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) /
(1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4)));
} while (abs(delta) > epsilon && --i > 0);
return [
x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))),
phi
];
};
var naturalEarth = function() {
return d3Geo.geoProjection(naturalEarthRaw)
.scale(175.295);
};
function nellHammerRaw(lambda, phi) {
return [
lambda * (1 + cos(phi)) / 2,
2 * (phi - tan(phi / 2))
];
}
nellHammerRaw.invert = function(x, y) {
var p = y / 2;
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; ++i) {
var c = cos(y / 2);
y -= delta = (y - tan(y / 2) - p) / (1 - 0.5 / (c * c));
}
return [
2 * x / (1 + cos(y)),
y
];
};
var nellHammer = function() {
return d3Geo.geoProjection(nellHammerRaw)
.scale(152.63);
};
// Based on Java implementation by Bojan Savric.
// https://github.com/OSUCartography/JMapProjLib/blob/master/src/com/jhlabs/map/proj/PattersonProjection.java
var pattersonK1 = 1.0148;
var pattersonK2 = 0.23185;
var pattersonK3 = -0.14499;
var pattersonK4 = 0.02406;
var pattersonC1 = pattersonK1;
var pattersonC2 = 5 * pattersonK2;
var pattersonC3 = 7 * pattersonK3;
var pattersonC4 = 9 * pattersonK4;
var pattersonYmax = 1.790857183;
function pattersonRaw(lambda, phi) {
var phi2 = phi * phi;
return [
lambda,
phi * (pattersonK1 + phi2 * phi2 * (pattersonK2 + phi2 * (pattersonK3 + pattersonK4 * phi2)))
];
}
pattersonRaw.invert = function(x, y) {
if (y > pattersonYmax) y = pattersonYmax;
else if (y < -pattersonYmax) y = -pattersonYmax;
var yc = y, delta;
do { // Newton-Raphson
var y2 = yc * yc;
yc -= delta = ((yc * (pattersonK1 + y2 * y2 * (pattersonK2 + y2 * (pattersonK3 + pattersonK4 * y2)))) - y) / (pattersonC1 + y2 * y2 * (pattersonC2 + y2 * (pattersonC3 + pattersonC4 * y2)));
} while (abs(delta) > epsilon);
return [x, yc];
};
var patterson = function() {
return d3Geo.geoProjection(pattersonRaw)
.scale(139.319);
};
function polyconicRaw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var tanPhi = tan(phi),
k = lambda * sin(phi);
return [
sin(k) / tanPhi,
phi + (1 - cos(k)) / tanPhi
];
}
polyconicRaw.invert = function(x, y) {
if (abs(y) < epsilon) return [x, 0];
var k = x * x + y * y,
phi = y * 0.5,
i = 10, delta;
do {
var tanPhi = tan(phi),
secPhi = 1 / cos(phi),
j = k - 2 * y * phi + phi * phi;
phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi);
} while (abs(delta) > epsilon && --i > 0);
tanPhi = tan(phi);
return [
(abs(y) < abs(phi + 1 / tanPhi) ? asin(x * tanPhi) : sign(x) * (acos(abs(x * tanPhi)) + halfPi)) / sin(phi),
phi
];
};
var polyconic = function() {
return d3Geo.geoProjection(polyconicRaw)
.scale(103.74);
};
// Note: 6-element arrays are used to denote the 3x3 affine transform matrix:
// [a, b, c,
// d, e, f,
// 0, 0, 1] - this redundant row is left out.
// Transform matrix for [a0, a1] -> [b0, b1].
var matrix = function(a, b) {
var u = subtract(a[1], a[0]),
v = subtract(b[1], b[0]),
phi = angle$1(u, v),
s = length(u) / length(v);
return multiply([
1, 0, a[0][0],
0, 1, a[0][1]
], multiply([
s, 0, 0,
0, s, 0
], multiply([
cos(phi), sin(phi), 0,
-sin(phi), cos(phi), 0
], [
1, 0, -b[0][0],
0, 1, -b[0][1]
])));
};
// Inverts a transform matrix.
function inverse(m) {
var k = 1 / (m[0] * m[4] - m[1] * m[3]);
return [
k * m[4], -k * m[1], k * (m[1] * m[5] - m[2] * m[4]),
-k * m[3], k * m[0], k * (m[2] * m[3] - m[0] * m[5])
];
}
// Multiplies two 3x2 matrices.
function multiply(a, b) {
return [
a[0] * b[0] + a[1] * b[3],
a[0] * b[1] + a[1] * b[4],
a[0] * b[2] + a[1] * b[5] + a[2],
a[3] * b[0] + a[4] * b[3],
a[3] * b[1] + a[4] * b[4],
a[3] * b[2] + a[4] * b[5] + a[5]
];
}
// Subtracts 2D vectors.
function subtract(a, b) {
return [a[0] - b[0], a[1] - b[1]];
}
// Magnitude of a 2D vector.
function length(v) {
return sqrt(v[0] * v[0] + v[1] * v[1]);
}
// Angle between two 2D vectors.
function angle$1(a, b) {
return atan2(a[0] * b[1] - a[1] * b[0], a[0] * b[0] + a[1] * b[1]);
}
// Creates a polyhedral projection.
// * root: a spanning tree of polygon faces. Nodes are automatically
// augmented with a transform matrix.
// * face: a function that returns the appropriate node for a given {lambda, phi}
// point (radians).
// * r: rotation angle for final polyhedral net. Defaults to -pi / 6 (for
// butterflies).
var polyhedral = function(root, face, r) {
r = r == null ? -pi / 6 : r; // TODO automate
recurse(root, {transform: [
cos(r), sin(r), 0,
-sin(r), cos(r), 0
]});
function recurse(node, parent) {
node.edges = faceEdges(node.face);
// Find shared edge.
if (parent.face) {
var shared = node.shared = sharedEdge(node.face, parent.face),
m = matrix(shared.map(parent.project), shared.map(node.project));
node.transform = parent.transform ? multiply(parent.transform, m) : m;
// Replace shared edge in parent edges array.
var edges = parent.edges;
for (var i = 0, n = edges.length; i < n; ++i) {
if (pointEqual$1(shared[0], edges[i][1]) && pointEqual$1(shared[1], edges[i][0])) edges[i] = node;
if (pointEqual$1(shared[0], edges[i][0]) && pointEqual$1(shared[1], edges[i][1])) edges[i] = node;
}
edges = node.edges;
for (i = 0, n = edges.length; i < n; ++i) {
if (pointEqual$1(shared[0], edges[i][0]) && pointEqual$1(shared[1], edges[i][1])) edges[i] = parent;
if (pointEqual$1(shared[0], edges[i][1]) && pointEqual$1(shared[1], edges[i][0])) edges[i] = parent;
}
} else {
node.transform = parent.transform;
}
if (node.children) {
node.children.forEach(function(child) {
recurse(child, node);
});
}
return node;
}
function forward(lambda, phi) {
var node = face(lambda, phi),
point = node.project([lambda * degrees, phi * degrees]),
t;
if (t = node.transform) {
return [
t[0] * point[0] + t[1] * point[1] + t[2],
-(t[3] * point[0] + t[4] * point[1] + t[5])
];
}
point[1] = -point[1];
return point;
}
// Naive inverse! A faster solution would use bounding boxes, or even a
// polygonal quadtree.
if (hasInverse(root)) forward.invert = function(x, y) {
var coordinates = faceInvert(root, [x, -y]);
return coordinates && (coordinates[0] *= radians, coordinates[1] *= radians, coordinates);
};
function faceInvert(node, coordinates) {
var invert = node.project.invert,
t = node.transform,
point = coordinates;
if (t) {
t = inverse(t);
point = [
t[0] * point[0] + t[1] * point[1] + t[2],
(t[3] * point[0] + t[4] * point[1] + t[5])
];
}
if (invert && node === faceDegrees(p = invert(point))) return p;
var p,
children = node.children;
for (var i = 0, n = children && children.length; i < n; ++i) {
if (p = faceInvert(children[i], coordinates)) return p;
}
}
function faceDegrees(coordinates) {
return face(coordinates[0] * radians, coordinates[1] * radians);
}
var proj = d3Geo.geoProjection(forward),
stream_ = proj.stream;
console.log(d3Geo.clipPolygon);
proj.stream = function(stream) {
var rotate = proj.rotate(),
rotateStream = stream_(stream),
sphereStream = (proj.rotate([0, 0]), stream_(stream));
proj.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart();
sphereStream.lineStart();
outline(sphereStream, root);
sphereStream.lineEnd();
sphereStream.polygonEnd();
};
return rotateStream;
};
//console.log('proj.clipAngle', proj.clipAngle(180));
return proj;
};
function outline(stream, node, parent) {
var point,
edges = node.edges,
n = edges.length,
edge,
multiPoint = {type: "MultiPoint", coordinates: node.face},
notPoles = node.face.filter(function(d) { return abs(d[1]) !== 90; }),
b = d3Geo.geoBounds({type: "MultiPoint", coordinates: notPoles}),
inside = false,
j = -1,
dx = b[1][0] - b[0][0];
// TODO
var c = dx === 180 || dx === 360
? [(b[0][0] + b[1][0]) / 2, (b[0][1] + b[1][1]) / 2]
: d3Geo.geoCentroid(multiPoint);
// First find the shared edge…
if (parent) while (++j < n) {
if (edges[j] === parent) break;
}
++j;
for (var i = 0; i < n; ++i) {
edge = edges[(i + j) % n];
if (Array.isArray(edge)) {
if (!inside) {
stream.point((point = d3Geo.geoInterpolate(edge[0], c)(epsilon))[0], point[1]);
inside = true;
}
stream.point((point = d3Geo.geoInterpolate(edge[1], c)(epsilon))[0], point[1]);
} else {
inside = false;
if (edge !== parent) outline(stream, edge, node);
}
}
}
// Tests equality of two spherical points.
function pointEqual$1(a, b) {
return a && b && a[0] === b[0] && a[1] === b[1];
}
// Finds a shared edge given two clockwise polygons.
function sharedEdge(a, b) {
var x, y, n = a.length, found = null;
for (var i = 0; i < n; ++i) {
x = a[i];
for (var j = b.length; --j >= 0;) {
y = b[j];
if (x[0] === y[0] && x[1] === y[1]) {
if (found) return [found, x];
found = x;
}
}
}
}
// Converts an array of n face vertices to an array of n + 1 edges.
function faceEdges(face) {
var n = face.length,
edges = [];
for (var a = face[n - 1], i = 0; i < n; ++i) edges.push([a, a = face[i]]);
return edges;
}
function hasInverse(node) {
return node.project.invert || node.children && node.children.some(hasInverse);
}
var phi1 = atan(sqrt1_2) * degrees;
var cube = [
[0, phi1], [90, phi1], [180, phi1], [-90, phi1],
[0, -phi1], [90, -phi1], [180, -phi1], [-90, -phi1]
];
var cube$1 = [
[0, 3, 2, 1], // N
[0, 1, 5, 4],
[1, 2, 6, 5],
[2, 3, 7, 6],
[3, 0, 4, 7],
[4, 5, 6, 7] // S
].map(function(face) {
return face.map(function(i) {
return cube[i];
});
});
var f3 = function(faceProjection) {
// it is possible to pass a specific projection on each face
// by default is is a gnomonic projection centered on the face's centroid
// scale 1 by convention
faceProjection = faceProjection || function(face) {
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face});
return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]);
};
// the faces from the cube each yield
// - face: its four vertices
// - contains: does this face contain a point?
// - project: local projection on this face
var faces = cube$1.map(function(face) {
var polygon = face.slice();
polygon.push(polygon[0]);
return {
face: face,
contains: function(lambda, phi) {
return d3Geo.geoContains({ type: "Polygon", coordinates: [ polygon ] },
[lambda * degrees, phi * degrees]);
},
project: faceProjection(face)
};
});
// Build a tree of the faces, starting with face 0 (North Pole)
// which has no parent (-1); the next four faces around the equator
// are attached to the north face (0); the face containing the South Pole
// is attached to South America (4)
[-1, 0, 0, 0, 0, 4].forEach(function(d, i) {
var node = faces[d];
node && (node.children || (node.children = [])).push(faces[i]);
});
// Polyhedral projection
return polyhedral(faces[0], function(lambda, phi) {
for (var i = 0; i < faces.length; i++) {
if (faces[i].contains(lambda, phi)) return faces[i];
}
},
-pi/4 // rotation of the root face in the projected (pixel) space
)
.scale(83) // TODO: perfect fit
.rotate([28,-4,0]) // See that California touches the corner, and Australia
.center([0, 90]) // let's put the North Pole in the page's center
.clipAngle(180); // seems like the only way to say we don't want antimeridian clipping
};
// TODO generate on-the-fly to avoid external modification.
var octahedron = [
[0, 90],
[-90, 0], [0, 0], [90, 0], [180, 0],
[0, -90]
];
var octahedron$1 = [
[0, 2, 1],
[0, 3, 2],
[5, 1, 2],
[5, 2, 3],
[0, 1, 4],
[0, 4, 3],
[5, 4, 1],
[5, 3, 4]
].map(function(face) {
return face.map(function(i) {
return octahedron[i];
});
});
var kx = 2 / sqrt(3);
function collignonK(a, b) {
var p = collignonRaw(a, b);
return [p[0] * kx, p[1]];
}
collignonK.invert = function(x,y) {
return collignonRaw.invert(x / kx, y);
};
var collignon$1 = function(faceProjection) {
faceProjection = faceProjection || function(face) {
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face});
return d3Geo.geoProjection(collignonK).translate([0, 0]).scale(1).rotate(c[1] > 0 ? [-c[0], 0] : [180 - c[0], 180]);
};
var faces = octahedron$1.map(function(face) {
return {face: face, project: faceProjection(face)};
});
[-1, 0, 0, 1, 0, 1, 4, 5].forEach(function(d, i) {
var node = faces[d];
node && (node.children || (node.children = [])).push(faces[i]);
});
return polyhedral(faces[0], function(lambda, phi) {
return faces[lambda < -pi / 2 ? phi < 0 ? 6 : 4
: lambda < 0 ? phi < 0 ? 2 : 0
: lambda < pi / 2 ? phi < 0 ? 3 : 1
: phi < 0 ? 7 : 5];
})
.scale(121.906)
.center([0, 48.5904]);
};
var waterman = function(faceProjection) {
faceProjection = faceProjection || function(face) {
var c = face.length === 6 ? d3Geo.geoCentroid({type: "MultiPoint", coordinates: face}) : face[0];
return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]);
};
var w5 = octahedron$1.map(function(face) {
var xyz = face.map(cartesian),
n = xyz.length,
a = xyz[n - 1],
b,
hexagon = [];
for (var i = 0; i < n; ++i) {
b = xyz[i];
hexagon.push(spherical([
a[0] * 0.9486832980505138 + b[0] * 0.31622776601683794,
a[1] * 0.9486832980505138 + b[1] * 0.31622776601683794,
a[2] * 0.9486832980505138 + b[2] * 0.31622776601683794
]), spherical([
b[0] * 0.9486832980505138 + a[0] * 0.31622776601683794,
b[1] * 0.9486832980505138 + a[1] * 0.31622776601683794,
b[2] * 0.9486832980505138 + a[2] * 0.31622776601683794
]));
a = b;
}
return hexagon;
});
var cornerNormals = [];
var parents = [-1, 0, 0, 1, 0, 1, 4, 5];
w5.forEach(function(hexagon, j) {
var face = octahedron$1[j],
n = face.length,
normals = cornerNormals[j] = [];
for (var i = 0; i < n; ++i) {
w5.push([
face[i],
hexagon[(i * 2 + 2) % (2 * n)],
hexagon[(i * 2 + 1) % (2 * n)]
]);
parents.push(j);
normals.push(cross(
cartesian(hexagon[(i * 2 + 2) % (2 * n)]),
cartesian(hexagon[(i * 2 + 1) % (2 * n)])
));
}
});
var faces = w5.map(function(face) {
return {
project: faceProjection(face),
face: face
};
});
parents.forEach(function(d, i) {
var parent = faces[d];
parent && (parent.children || (parent.children = [])).push(faces[i]);
});
function face(lambda, phi) {
var cosphi = cos(phi),
p = [cosphi * cos(lambda), cosphi * sin(lambda), sin(phi)];
var hexagon = lambda < -pi / 2 ? phi < 0 ? 6 : 4
: lambda < 0 ? phi < 0 ? 2 : 0
: lambda < pi / 2 ? phi < 0 ? 3 : 1
: phi < 0 ? 7 : 5;
var n = cornerNormals[hexagon];
return faces[dot(n[0], p) < 0 ? 8 + 3 * hexagon
: dot(n[1], p) < 0 ? 8 + 3 * hexagon + 1
: dot(n[2], p) < 0 ? 8 + 3 * hexagon + 2
: hexagon];
}
return polyhedral(faces[0], face)
.scale(110.625)
.center([0,45]);
};
function dot(a, b) {
for (var i = 0, n = a.length, s = 0; i < n; ++i) s += a[i] * b[i];
return s;
}
function cross(a, b) {
return [
a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
];
}
// Converts 3D Cartesian to spherical coordinates (degrees).
function spherical(cartesian) {
return [
atan2(cartesian[1], cartesian[0]) * degrees,
asin(max(-1, min(1, cartesian[2]))) * degrees
];
}
// Converts spherical coordinates (degrees) to 3D Cartesian.
function cartesian(coordinates) {
var lambda = coordinates[0] * radians,
phi = coordinates[1] * radians,
cosphi = cos(phi);
return [
cosphi * cos(lambda),
cosphi * sin(lambda),
sin(phi)
];
}
var noop = function() {};
var clockwise = function(ring) {
if ((n = ring.length) < 4) return false;
var i = 0,
n,
area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1];
while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1];
return area <= 0;
};
var contains = function(ring, point) {
var x = point[0],
y = point[1],
contains = false;
for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) {
var pi = ring[i], xi = pi[0], yi = pi[1],
pj = ring[j], xj = pj[0], yj = pj[1];
if (((yi > y) ^ (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi)) contains = !contains;
}
return contains;
};
var index = function(object, projection) {
var stream = projection.stream, project;
if (!stream) throw new Error("invalid projection");
switch (object && object.type) {
case "Feature": project = projectFeature; break;
case "FeatureCollection": project = projectFeatureCollection; break;
default: project = projectGeometry; break;
}
return project(object, stream);
};
function projectFeatureCollection(o, stream) {
return {
type: "FeatureCollection",
features: o.features.map(function(f) {
return projectFeature(f, stream);
})
};
}
function projectFeature(o, stream) {
return {
type: "Feature",
id: o.id,
properties: o.properties,
geometry: projectGeometry(o.geometry, stream)
};
}
function projectGeometryCollection(o, stream) {
return {
type: "GeometryCollection",
geometries: o.geometries.map(function(o) {
return projectGeometry(o, stream);
})
};
}
function projectGeometry(o, stream) {
if (!o) return null;
if (o.type === "GeometryCollection") return projectGeometryCollection(o, stream);
var sink;
switch (o.type) {
case "Point": sink = sinkPoint; break;
case "MultiPoint": sink = sinkPoint; break;
case "LineString": sink = sinkLine; break;
case "MultiLineString": sink = sinkLine; break;
case "Polygon": sink = sinkPolygon; break;
case "MultiPolygon": sink = sinkPolygon; break;
case "Sphere": sink = sinkPolygon; break;
default: return null;
}
d3Geo.geoStream(o, stream(sink));
return sink.result();
}
var points = [];
var lines = [];
var sinkPoint = {
point: function(x, y) {
points.push([x, y]);
},
result: function() {
var result = !points.length ? null
: points.length < 2 ? {type: "Point", coordinates: points[0]}
: {type: "MultiPoint", coordinates: points};
points = [];
return result;
}
};
var sinkLine = {
lineStart: noop,
point: function(x, y) {
points.push([x, y]);
},
lineEnd: function() {
if (points.length) lines.push(points), points = [];
},
result: function() {
var result = !lines.length ? null
: lines.length < 2 ? {type: "LineString", coordinates: lines[0]}
: {type: "MultiLineString", coordinates: lines};
lines = [];
return result;
}
};
var sinkPolygon = {
polygonStart: noop,
lineStart: noop,
point: function(x, y) {
points.push([x, y]);
},
lineEnd: function() {
var n = points.length;
if (n) {
do points.push(points[0].slice()); while (++n < 4);
lines.push(points), points = [];
}
},
polygonEnd: noop,
result: function() {
if (!lines.length) return null;
var polygons = [],
holes = [];
// https://github.com/d3/d3/issues/1558
lines.forEach(function(ring) {
if (clockwise(ring)) polygons.push([ring]);
else holes.push(ring);
});
holes.forEach(function(hole) {
var point = hole[0];
polygons.some(function(polygon) {
if (contains(polygon[0], point)) {
polygon.push(hole);
return true;
}
}) || polygons.push([hole]);
});
lines = [];
return !polygons.length ? null
: polygons.length > 1 ? {type: "MultiPolygon", coordinates: polygons}
: {type: "Polygon", coordinates: polygons[0]};
}
};
var quincuncial = function(project) {
var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0];
function projectQuincuncial(lambda, phi) {
var t = abs(lambda) < halfPi,
p = project(t ? lambda : lambda > 0 ? lambda - pi : lambda + pi, phi),
x = (p[0] - p[1]) * sqrt1_2,
y = (p[0] + p[1]) * sqrt1_2;
if (t) return [x, y];
var d = dx * sqrt1_2,
s = x > 0 ^ y > 0 ? -1 : 1;
return [s * x - sign(y) * d, s * y - sign(x) * d];
}
if (project.invert) projectQuincuncial.invert = function(x0, y0) {
var x = (x0 + y0) * sqrt1_2,
y = (y0 - x0) * sqrt1_2,
t = abs(x) < 0.5 * dx && abs(y) < 0.5 * dx;
if (!t) {
var d = dx * sqrt1_2,
s = x > 0 ^ y > 0 ? -1 : 1,
x1 = -s * (x0 + (y > 0 ? 1 : -1) * d),
y1 = -s * (y0 + (x > 0 ? 1 : -1) * d);
x = (-x1 - y1) * sqrt1_2;
y = (x1 - y1) * sqrt1_2;
}
var p = project.invert(x, y);
if (!t) p[0] += x > 0 ? pi : -pi;
return p;
};
return d3Geo.geoProjection(projectQuincuncial)
.rotate([-90, -90, 45])
.clipAngle(180 - 1e-3);
};
var gringorten$1 = function() {
return quincuncial(gringortenRaw)
.scale(176.423);
};
var peirce = function() {
return quincuncial(guyouRaw)
.scale(111.48);
};
var quantize = function(o, digits) {
if (!(0 <= (digits = +digits) && digits <= 20)) throw new Error("invalid digits");
function quantizePoint(coordinates) {
coordinates[0] = +coordinates[0].toFixed(digits);
coordinates[1] = +coordinates[1].toFixed(digits);
}
function quantizePoints(coordinates) {
coordinates.forEach(quantizePoint);
}
function quantizePolygon(coordinates) {
coordinates.forEach(quantizePoints);
}
function quantizeGeometry(o) {
if (o) switch (o.type) {
case "GeometryCollection": o.geometries.forEach(quantizeGeometry); break;
case "Point": quantizePoint(o.coordinates); break;
case "MultiPoint": case "LineString": quantizePoints(o.coordinates); break;
case "MultiLineString": case "Polygon": quantizePolygon(o.coordinates); break;
case "MultiPolygon": o.coordinates.forEach(quantizePolygon); break;
default: return;
}
}
function quantizeFeature(o) {
quantizeGeometry(o.geometry);
}
if (o) switch (o.type) {
case "Feature": quantizeFeature(o); break;
case "FeatureCollection": o.features.forEach(quantizeFeature); break;
default: quantizeGeometry(o); break;
}
return o;
};
function rectangularPolyconicRaw(phi0) {
var sinPhi0 = sin(phi0);
function forward(lambda, phi) {
var A = sinPhi0 ? tan(lambda * sinPhi0 / 2) / sinPhi0 : lambda / 2;
if (!phi) return [2 * A, -phi0];
var E = 2 * atan(A * sin(phi)),
cotPhi = 1 / tan(phi);
return [
sin(E) * cotPhi,
phi + (1 - cos(E)) * cotPhi - phi0
];
}
// TODO return null for points outside outline.
forward.invert = function(x, y) {
if (abs(y += phi0) < epsilon) return [sinPhi0 ? 2 * atan(sinPhi0 * x / 2) / sinPhi0 : x, 0];
var k = x * x + y * y,
phi = 0,
i = 10, delta;
do {
var tanPhi = tan(phi),
secPhi = 1 / cos(phi),
j = k - 2 * y * phi + phi * phi;
phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi);
} while (abs(delta) > epsilon && --i > 0);
var E = x * (tanPhi = tan(phi)),
A = tan(abs(y) < abs(phi + 1 / tanPhi) ? asin(E) * 0.5 : acos(E) * 0.5 + pi / 4) / sin(phi);
return [
sinPhi0 ? 2 * atan(sinPhi0 * A) / sinPhi0 : 2 * A,
phi
];
};
return forward;
}
var rectangularPolyconic = function() {
return parallel1(rectangularPolyconicRaw)
.scale(131.215);
};
var K = [
[0.9986, -0.062],
[1.0000, 0.0000],
[0.9986, 0.0620],
[0.9954, 0.1240],
[0.9900, 0.1860],
[0.9822, 0.2480],
[0.9730, 0.3100],
[0.9600, 0.3720],
[0.9427, 0.4340],
[0.9216, 0.4958],
[0.8962, 0.5571],
[0.8679, 0.6176],
[0.8350, 0.6769],
[0.7986, 0.7346],
[0.7597, 0.7903],
[0.7186, 0.8435],
[0.6732, 0.8936],
[0.6213, 0.9394],
[0.5722, 0.9761],
[0.5322, 1.0000]
];
K.forEach(function(d) {
d[1] *= 1.0144;
});
function robinsonRaw(lambda, phi) {
var i = min(18, abs(phi) * 36 / pi),
i0 = floor(i),
di = i - i0,
ax = (k = K[i0])[0],
ay = k[1],
bx = (k = K[++i0])[0],
by = k[1],
cx = (k = K[min(19, ++i0)])[0],
cy = k[1],
k;
return [
lambda * (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2),
(phi > 0 ? halfPi : -halfPi) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2)
];
}
robinsonRaw.invert = function(x, y) {
var yy = y / halfPi,
phi = yy * 90,
i = min(18, abs(phi / 5)),
i0 = max(0, floor(i));
do {
var ay = K[i0][1],
by = K[i0 + 1][1],
cy = K[min(19, i0 + 2)][1],
u = cy - ay,
v = cy - 2 * by + ay,
t = 2 * (abs(yy) - by) / u,
c = v / u,
di = t * (1 - c * t * (1 - 2 * c * t));
if (di >= 0 || i0 === 1) {
phi = (y >= 0 ? 5 : -5) * (di + i);
var j = 50, delta;
do {
i = min(18, abs(phi) / 5);
i0 = floor(i);
di = i - i0;
ay = K[i0][1];
by = K[i0 + 1][1];
cy = K[min(19, i0 + 2)][1];
phi -= (delta = (y >= 0 ? halfPi : -halfPi) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2) - y) * degrees;
} while (abs(delta) > epsilon2 && --j > 0);
break;
}
} while (--i0 >= 0);
var ax = K[i0][0],
bx = K[i0 + 1][0],
cx = K[min(19, i0 + 2)][0];
return [
x / (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2),
phi * radians
];
};
var robinson = function() {
return d3Geo.geoProjection(robinsonRaw)
.scale(152.63);
};
function satelliteVerticalRaw(P) {
function forward(lambda, phi) {
var cosPhi = cos(phi),
k = (P - 1) / (P - cosPhi * cos(lambda));
return [
k * cosPhi * sin(lambda),
k * sin(phi)
];
}
forward.invert = function(x, y) {
var rho2 = x * x + y * y,
rho = sqrt(rho2),
sinc = (P - sqrt(1 - rho2 * (P + 1) / (P - 1))) / ((P - 1) / rho + rho / (P - 1));
return [
atan2(x * sinc, rho * sqrt(1 - sinc * sinc)),
rho ? asin(y * sinc / rho) : 0
];
};
return forward;
}
function satelliteRaw(P, omega) {
var vertical = satelliteVerticalRaw(P);
if (!omega) return vertical;
var cosOmega = cos(omega),
sinOmega = sin(omega);
function forward(lambda, phi) {
var coordinates = vertical(lambda, phi),
y = coordinates[1],
A = y * sinOmega / (P - 1) + cosOmega;
return [
coordinates[0] * cosOmega / A,
y / A
];
}
forward.invert = function(x, y) {
var k = (P - 1) / (P - 1 - y * sinOmega);
return vertical.invert(k * x, k * y * cosOmega);
};
return forward;
}
var satellite = function() {
var distance = 2,
omega = 0,
m = d3Geo.geoProjectionMutator(satelliteRaw),
p = m(distance, omega);
// As a multiple of radius.
p.distance = function(_) {
if (!arguments.length) return distance;
return m(distance = +_, omega);
};
p.tilt = function(_) {
if (!arguments.length) return omega * degrees;
return m(distance, omega = _ * radians);
};
return p
.scale(432.147)
.clipAngle(acos(1 / distance) * degrees - 1e-6);
};
var epsilon$1 = 1e-4;
var epsilonInverse = 1e4;
var x0 = -180;
var x0e = x0 + epsilon$1;
var x1 = 180;
var x1e = x1 - epsilon$1;
var y0 = -90;
var y0e = y0 + epsilon$1;
var y1 = 90;
var y1e = y1 - epsilon$1;
function quantize$1(x) {
return Math.floor(x * epsilonInverse) / epsilonInverse;
}
function normalizePoint(y) {
return y === y0 || y === y1
? [0, y] // pole
: [x0, quantize$1(y)]; // antimeridian
}
function clampPoint(p) {
if (p[0] <= x0e) p[0] = x0;
else if (p[0] >= x1e) p[0] = x1;
if (p[1] <= y0e) p[1] = y0;
else if (p[1] >= y1e) p[1] = y1;
}
function clampPoints(points) {
points.forEach(clampPoint);
}
// For each ring, detect where it crosses the antimeridian or pole.
function extractFragments(polygon, fragments) {
for (var j = 0, m = polygon.length; j < m; ++j) {
var ring = polygon[j];
ring.polygon = polygon;
// By default, assume that this ring doesn’t need any stitching.
fragments.push(ring);
for (var i = 0, n = ring.length; i < n; ++i) {
var point = ring[i],
x = point[0],
y = point[1];
// If this is an antimeridian or polar point…
if (x <= x0e || x >= x1e || y <= y0e || y >= y1e) {
clampPoint(point);
// Advance through any antimeridian or polar points…
for (var k = i + 1; k < n; ++k) {
var pointk = ring[k],
xk = pointk[0],
yk = pointk[1];
if (xk > x0e && xk < x1e && yk > y0e && yk < y1e) break;
}
// If this was just a single antimeridian or polar point,
// we don’t need to cut this ring into a fragment;
// we can just leave it as-is.
if (k === i + 1) continue;
// Otherwise, if this is not the first point in the ring,
// cut the current fragment so that it ends at the current point.
// The current point is also normalized for later joining.
if (i) {
var fragmentBefore = ring.slice(0, i + 1);
fragmentBefore.polygon = polygon;
fragmentBefore[fragmentBefore.length - 1] = normalizePoint(y);
fragments[fragments.length - 1] = fragmentBefore;
}
// If the ring started with an antimeridian fragment,
// we can ignore that fragment entirely.
else fragments.pop();
// If the remainder of the ring is an antimeridian fragment,
// move on to the next ring.
if (k >= n) break;
// Otherwise, add the remaining ring fragment and continue.
fragments.push(ring = ring.slice(k - 1));
ring[0] = normalizePoint(ring[0][1]);
ring.polygon = polygon;
i = -1;
n = ring.length;
}
}
}
polygon.length = 0;
}
// Now stitch the fragments back together into rings.
// TODO remove empty polygons.
function stitchFragments(fragments) {
var i, n = fragments.length;
// To connect the fragments start-to-end, create a simple index by end.
var fragmentByStart = {},
fragmentByEnd = {},
fragment,
start,
startFragment,
end,
endFragment;
// For each fragment…
for (i = 0; i < n; ++i) {
fragment = fragments[i];
start = fragment[0];
end = fragment[fragment.length - 1];
// If this fragment is closed, add it as a standalone ring.
if (start[0] === end[0] && start[1] === end[1]) {
fragment.polygon.push(fragment);
fragments[i] = null;
continue;
}
fragment.index = i;
fragmentByStart[start] = fragmentByEnd[end] = fragment;
}
// For each open fragment…
for (i = 0; i < n; ++i) {
fragment = fragments[i];
if (fragment) {
start = fragment[0];
end = fragment[fragment.length - 1];
startFragment = fragmentByEnd[start];
endFragment = fragmentByStart[end];
delete fragmentByStart[start];
delete fragmentByEnd[end];
// If this fragment is closed, add it as a standalone ring.
if (start[0] === end[0] && start[1] === end[1]) {
fragment.polygon.push(fragment);
continue;
}
if (startFragment) {
delete fragmentByEnd[start];
delete fragmentByStart[startFragment[0]];
startFragment.pop(); // drop the shared coordinate
fragments[startFragment.index] = null;
fragment = startFragment.concat(fragment);
fragment.polygon = startFragment.polygon;
if (startFragment === endFragment) {
// Connect both ends to this single fragment to create a ring.
fragment.polygon.push(fragment);
} else {
fragment.index = n++;
fragments.push(fragmentByStart[fragment[0]] = fragmentByEnd[fragment[fragment.length - 1]] = fragment);
}
} else if (endFragment) {
delete fragmentByStart[end];
delete fragmentByEnd[endFragment[endFragment.length - 1]];
fragment.pop(); // drop the shared coordinate
fragment = fragment.concat(endFragment);
fragment.polygon = endFragment.polygon;
fragment.index = n++;
fragments[endFragment.index] = null;
fragments.push(fragmentByStart[fragment[0]] = fragmentByEnd[fragment[fragment.length - 1]] = fragment);
} else {
fragment.push(fragment[0]); // close ring
fragment.polygon.push(fragment);
}
}
}
}
function stitchFeature(o) {
stitchGeometry(o.geometry);
}
function stitchGeometry(o) {
if (!o) return;
var fragments, i, n;
switch (o.type) {
case "GeometryCollection": {
o.geometries.forEach(stitchGeometry);
return;
}
case "Point": {
clampPoint(o.coordinates);
break;
}
case "MultiPoint":
case "LineString": {
clampPoints(o.coordinates);
break;
}
case "MultiLineString": {
o.coordinates.forEach(clampPoints);
break;
}
case "Polygon": {
extractFragments(o.coordinates, fragments = []);
break;
}
case "MultiPolygon": {
fragments = [], i = -1, n = o.coordinates.length;
while (++i < n) extractFragments(o.coordinates[i], fragments);
break;
}
default: return;
}
stitchFragments(fragments);
}
var stitch = function(o) {
if (o) switch (o.type) {
case "Feature": stitchFeature(o); break;
case "FeatureCollection": o.features.forEach(stitchFeature); break;
default: stitchGeometry(o); break;
}
return o;
};
function timesRaw(lambda, phi) {
var t = tan(phi / 2),
s = sin(quarterPi * t);
return [
lambda * (0.74482 - 0.34588 * s * s),
1.70711 * t
];
}
timesRaw.invert = function(x, y) {
var t = y / 1.70711,
s = sin(quarterPi * t);
return [
x / (0.74482 - 0.34588 * s * s),
2 * atan(t)
];
};
var times = function() {
return d3Geo.geoProjection(timesRaw)
.scale(146.153);
};
// Compute the origin as the midpoint of the two reference points.
// Rotate one of the reference points by the origin.
// Apply the spherical law of sines to compute gamma rotation.
var twoPoint = function(raw, p0, p1) {
var i = d3Geo.geoInterpolate(p0, p1),
o = i(0.5),
a = d3Geo.geoRotation([-o[0], -o[1]])(p0),
b = i.distance / 2,
y = -asin(sin(a[1] * radians) / sin(b)),
R = [-o[0], -o[1], -(a[0] > 0 ? pi - y : y) * degrees],
p = d3Geo.geoProjection(raw(b)).rotate(R),
r = d3Geo.geoRotation(R),
center = p.center;
delete p.rotate;
p.center = function(_) {
return arguments.length ? center(r(_)) : r.invert(center());
};
return p
.clipAngle(90);
};
function twoPointAzimuthalRaw(d) {
var cosd = cos(d);
function forward(lambda, phi) {
var coordinates = d3Geo.geoGnomonicRaw(lambda, phi);
coordinates[0] *= cosd;
return coordinates;
}
forward.invert = function(x, y) {
return d3Geo.geoGnomonicRaw.invert(x / cosd, y);
};
return forward;
}
function twoPointAzimuthalUsa() {
return twoPointAzimuthal([-158, 21.5], [-77, 39])
.clipAngle(60)
.scale(400);
}
function twoPointAzimuthal(p0, p1) {
return twoPoint(twoPointAzimuthalRaw, p0, p1);
}
// TODO clip to ellipse
function twoPointEquidistantRaw(z0) {
if (!(z0 *= 2)) return d3Geo.geoAzimuthalEquidistantRaw;
var lambdaa = -z0 / 2,
lambdab = -lambdaa,
z02 = z0 * z0,
tanLambda0 = tan(lambdab),
S = 0.5 / sin(lambdab);
function forward(lambda, phi) {
var za = acos(cos(phi) * cos(lambda - lambdaa)),
zb = acos(cos(phi) * cos(lambda - lambdab)),
ys = phi < 0 ? -1 : 1;
za *= za, zb *= zb;
return [
(za - zb) / (2 * z0),
ys * sqrt(4 * z02 * zb - (z02 - za + zb) * (z02 - za + zb)) / (2 * z0)
];
}
forward.invert = function(x, y) {
var y2 = y * y,
cosza = cos(sqrt(y2 + (t = x + lambdaa) * t)),
coszb = cos(sqrt(y2 + (t = x + lambdab) * t)),
t,
d;
return [
atan2(d = cosza - coszb, t = (cosza + coszb) * tanLambda0),
(y < 0 ? -1 : 1) * acos(sqrt(t * t + d * d) * S)
];
};
return forward;
}
function twoPointEquidistantUsa() {
return twoPointEquidistant([-158, 21.5], [-77, 39])
.clipAngle(130)
.scale(122.571);
}
function twoPointEquidistant(p0, p1) {
return twoPoint(twoPointEquidistantRaw, p0, p1);
}
function vanDerGrintenRaw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var sinTheta = abs(phi / halfPi),
theta = asin(sinTheta);
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, sign(phi) * pi * tan(theta / 2)];
var cosTheta = cos(theta),
A = abs(pi / lambda - lambda / pi) / 2,
A2 = A * A,
G = cosTheta / (sinTheta + cosTheta - 1),
P = G * (2 / sinTheta - 1),
P2 = P * P,
P2_A2 = P2 + A2,
G_P2 = G - P2,
Q = A2 + G;
return [
sign(lambda) * pi * (A * G_P2 + sqrt(A2 * G_P2 * G_P2 - P2_A2 * (G * G - P2))) / P2_A2,
sign(phi) * pi * (P * Q - A * sqrt((A2 + 1) * P2_A2 - Q * Q)) / P2_A2
];
}
vanDerGrintenRaw.invert = function(x, y) {
if (abs(y) < epsilon) return [x, 0];
if (abs(x) < epsilon) return [0, halfPi * sin(2 * atan(y / pi))];
var x2 = (x /= pi) * x,
y2 = (y /= pi) * y,
x2_y2 = x2 + y2,
z = x2_y2 * x2_y2,
c1 = -abs(y) * (1 + x2_y2),
c2 = c1 - 2 * y2 + x2,
c3 = -2 * c1 + 1 + 2 * y2 + z,
d = y2 / c3 + (2 * c2 * c2 * c2 / (c3 * c3 * c3) - 9 * c1 * c2 / (c3 * c3)) / 27,
a1 = (c1 - c2 * c2 / (3 * c3)) / c3,
m1 = 2 * sqrt(-a1 / 3),
theta1 = acos(3 * d / (a1 * m1)) / 3;
return [
pi * (x2_y2 - 1 + sqrt(1 + 2 * (x2 - y2) + z)) / (2 * x),
sign(y) * pi * (-m1 * cos(theta1 + pi / 3) - c2 / (3 * c3))
];
};
var vanDerGrinten = function() {
return d3Geo.geoProjection(vanDerGrintenRaw)
.scale(79.4183);
};
function vanDerGrinten2Raw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var sinTheta = abs(phi / halfPi),
theta = asin(sinTheta);
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, sign(phi) * pi * tan(theta / 2)];
var cosTheta = cos(theta),
A = abs(pi / lambda - lambda / pi) / 2,
A2 = A * A,
x1 = cosTheta * (sqrt(1 + A2) - A * cosTheta) / (1 + A2 * sinTheta * sinTheta);
return [
sign(lambda) * pi * x1,
sign(phi) * pi * sqrt(1 - x1 * (2 * A + x1))
];
}
vanDerGrinten2Raw.invert = function(x, y) {
if (!x) return [0, halfPi * sin(2 * atan(y / pi))];
var x1 = abs(x / pi),
A = (1 - x1 * x1 - (y /= pi) * y) / (2 * x1),
A2 = A * A,
B = sqrt(A2 + 1);
return [
sign(x) * pi * (B - A),
sign(y) * halfPi * sin(2 * atan2(sqrt((1 - 2 * A * x1) * (A + B) - x1), sqrt(B + A + x1)))
];
};
var vanDerGrinten2 = function() {
return d3Geo.geoProjection(vanDerGrinten2Raw)
.scale(79.4183);
};
function vanDerGrinten3Raw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var sinTheta = phi / halfPi,
theta = asin(sinTheta);
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, pi * tan(theta / 2)];
var A = (pi / lambda - lambda / pi) / 2,
y1 = sinTheta / (1 + cos(theta));
return [
pi * (sign(lambda) * sqrt(A * A + 1 - y1 * y1) - A),
pi * y1
];
}
vanDerGrinten3Raw.invert = function(x, y) {
if (!y) return [x, 0];
var y1 = y / pi,
A = (pi * pi * (1 - y1 * y1) - x * x) / (2 * pi * x);
return [
x ? pi * (sign(x) * sqrt(A * A + 1) - A) : 0,
halfPi * sin(2 * atan(y1))
];
};
var vanDerGrinten3 = function() {
return d3Geo.geoProjection(vanDerGrinten3Raw)
.scale(79.4183);
};
function vanDerGrinten4Raw(lambda, phi) {
if (!phi) return [lambda, 0];
var phi0 = abs(phi);
if (!lambda || phi0 === halfPi) return [0, phi];
var B = phi0 / halfPi,
B2 = B * B,
C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)),
C2 = C * C,
BC = B * C,
B_C2 = B2 + C2 + 2 * BC,
B_3C = B + 3 * C,
lambda0 = lambda / halfPi,
lambda1 = lambda0 + 1 / lambda0,
D = sign(abs(lambda) - halfPi) * sqrt(lambda1 * lambda1 - 4),
D2 = D * D,
F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + 12 * BC * C2 + 4 * C2 * C2),
x1 = (D * (B_C2 + C2 - 1) + 2 * sqrt(F)) / (4 * B_C2 + D2);
return [
sign(lambda) * halfPi * x1,
sign(phi) * halfPi * sqrt(1 + D * abs(x1) - x1 * x1)
];
}
vanDerGrinten4Raw.invert = function(x, y) {
var delta;
if (!x || !y) return [x, y];
y /= pi;
var x1 = sign(x) * x / halfPi,
D = (x1 * x1 - 1 + 4 * y * y) / abs(x1),
D2 = D * D,
B = 2 * y,
i = 50;
do {
var B2 = B * B,
C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)),
C_ = (3 * B - B2 * B - 10) / (2 * B2 * B),
C2 = C * C,
BC = B * C,
B_C = B + C,
B_C2 = B_C * B_C,
B_3C = B + 3 * C,
F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + C2 * (12 * BC + 4 * C2)),
F_ = -2 * B_C * (4 * BC * C2 + (1 - 4 * B2 + 3 * B2 * B2) * (1 + C_) + C2 * (-6 + 14 * B2 - D2 + (-8 + 8 * B2 - 2 * D2) * C_) + BC * (-8 + 12 * B2 + (-10 + 10 * B2 - D2) * C_)),
sqrtF = sqrt(F),
f = D * (B_C2 + C2 - 1) + 2 * sqrtF - x1 * (4 * B_C2 + D2),
f_ = D * (2 * C * C_ + 2 * B_C * (1 + C_)) + F_ / sqrtF - 8 * B_C * (D * (-1 + C2 + B_C2) + 2 * sqrtF) * (1 + C_) / (D2 + 4 * B_C2);
B -= delta = f / f_;
} while (delta > epsilon && --i > 0);
return [
sign(x) * (sqrt(D * D + 4) + D) * pi / 4,
halfPi * B
];
};
var vanDerGrinten4 = function() {
return d3Geo.geoProjection(vanDerGrinten4Raw)
.scale(127.16);
};
var A = 4 * pi + 3 * sqrt(3);
var B = 2 * sqrt(2 * pi * sqrt(3) / A);
var wagner4Raw = mollweideBromleyRaw(B * sqrt(3) / pi, B, A / 6);
var wagner4 = function() {
return d3Geo.geoProjection(wagner4Raw)
.scale(176.84);
};
function wagner6Raw(lambda, phi) {
return [lambda * sqrt(1 - 3 * phi * phi / (pi * pi)), phi];
}
wagner6Raw.invert = function(x, y) {
return [x / sqrt(1 - 3 * y * y / (pi * pi)), y];
};
var wagner6 = function() {
return d3Geo.geoProjection(wagner6Raw)
.scale(152.63);
};
function wagner7Raw(lambda, phi) {
var s = 0.90631 * sin(phi),
c0 = sqrt(1 - s * s),
c1 = sqrt(2 / (1 + c0 * cos(lambda /= 3)));
return [
2.66723 * c0 * c1 * sin(lambda),
1.24104 * s * c1
];
}
wagner7Raw.invert = function(x, y) {
var t1 = x / 2.66723,
t2 = y / 1.24104,
p = sqrt(t1 * t1 + t2 * t2),
c = 2 * asin(p / 2);
return [
3 * atan2(x * tan(c), 2.66723 * p),
p && asin(y * sin(c) / (1.24104 * 0.90631 * p))
];
};
var wagner7 = function() {
return d3Geo.geoProjection(wagner7Raw)
.scale(172.632);
};
function wiechelRaw(lambda, phi) {
var cosPhi = cos(phi),
sinPhi = cos(lambda) * cosPhi,
sin1_Phi = 1 - sinPhi,
cosLambda = cos(lambda = atan2(sin(lambda) * cosPhi, -sin(phi))),
sinLambda = sin(lambda);
cosPhi = sqrt(1 - sinPhi * sinPhi);
return [
sinLambda * cosPhi - cosLambda * sin1_Phi,
-cosLambda * cosPhi - sinLambda * sin1_Phi
];
}
wiechelRaw.invert = function(x, y) {
var w = (x * x + y * y) / -2,
k = sqrt(-w * (2 + w)),
b = y * w + x * k,
a = x * w - y * k,
D = sqrt(a * a + b * b);
return [
atan2(k * b, D * (1 + w)),
D ? -asin(k * a / D) : 0
];
};
var wiechel = function() {
return d3Geo.geoProjection(wiechelRaw)
.rotate([0, -90, 45])
.scale(124.75)
.clipAngle(180 - 1e-3);
};
function winkel3Raw(lambda, phi) {
var coordinates = aitoffRaw(lambda, phi);
return [
(coordinates[0] + lambda / halfPi) / 2,
(coordinates[1] + phi) / 2
];
}
winkel3Raw.invert = function(x, y) {
var lambda = x, phi = y, i = 25;
do {
var cosphi = cos(phi),
sinphi = sin(phi),
sin_2phi = sin(2 * phi),
sin2phi = sinphi * sinphi,
cos2phi = cosphi * cosphi,
sinlambda = sin(lambda),
coslambda_2 = cos(lambda / 2),
sinlambda_2 = sin(lambda / 2),
sin2lambda_2 = sinlambda_2 * sinlambda_2,
C = 1 - cos2phi * coslambda_2 * coslambda_2,
E = C ? acos(cosphi * coslambda_2) * sqrt(F = 1 / C) : F = 0,
F,
fx = 0.5 * (2 * E * cosphi * sinlambda_2 + lambda / halfPi) - x,
fy = 0.5 * (E * sinphi + phi) - y,
dxdlambda = 0.5 * F * (cos2phi * sin2lambda_2 + E * cosphi * coslambda_2 * sin2phi) + 0.5 / halfPi,
dxdphi = F * (sinlambda * sin_2phi / 4 - E * sinphi * sinlambda_2),
dydlambda = 0.125 * F * (sin_2phi * sinlambda_2 - E * sinphi * cos2phi * sinlambda),
dydphi = 0.5 * F * (sin2phi * coslambda_2 + E * sin2lambda_2 * cosphi) + 0.5,
denominator = dxdphi * dydlambda - dydphi * dxdlambda,
dlambda = (fy * dxdphi - fx * dydphi) / denominator,
dphi = (fx * dydlambda - fy * dxdlambda) / denominator;
lambda -= dlambda, phi -= dphi;
} while ((abs(dlambda) > epsilon || abs(dphi) > epsilon) && --i > 0);
return [lambda, phi];
};
var winkel3 = function() {
return d3Geo.geoProjection(winkel3Raw)
.scale(158.837);
};
exports.geoAiry = airy;
exports.geoAiryRaw = airyRaw;
exports.geoAitoff = aitoff;
exports.geoAitoffRaw = aitoffRaw;
exports.geoArmadillo = armadillo;
exports.geoArmadilloRaw = armadilloRaw;
exports.geoAugust = august;
exports.geoAugustRaw = augustRaw;
exports.geoBaker = baker;
exports.geoBakerRaw = bakerRaw;
exports.geoBerghaus = berghaus;
exports.geoBerghausRaw = berghausRaw;
exports.geoBoggs = boggs;
exports.geoBoggsRaw = boggsRaw;
exports.geoBonne = bonne;
exports.geoBonneRaw = bonneRaw;
exports.geoBottomley = bottomley;
exports.geoBottomleyRaw = bottomleyRaw;
exports.geoBromley = bromley;
exports.geoBromleyRaw = bromleyRaw;
exports.geoChamberlin = chamberlin;
exports.geoChamberlinRaw = chamberlinRaw;
exports.geoChamberlinAfrica = chamberlinAfrica;
exports.geoCollignon = collignon;
exports.geoCollignonRaw = collignonRaw;
exports.geoCraig = craig;
exports.geoCraigRaw = craigRaw;
exports.geoCraster = craster;
exports.geoCrasterRaw = crasterRaw;
exports.geoCylindricalEqualArea = cylindricalEqualArea;
exports.geoCylindricalEqualAreaRaw = cylindricalEqualAreaRaw;
exports.geoCylindricalStereographic = cylindricalStereographic;
exports.geoCylindricalStereographicRaw = cylindricalStereographicRaw;
exports.geoEckert1 = eckert1;
exports.geoEckert1Raw = eckert1Raw;
exports.geoEckert2 = eckert2;
exports.geoEckert2Raw = eckert2Raw;
exports.geoEckert3 = eckert3;
exports.geoEckert3Raw = eckert3Raw;
exports.geoEckert4 = eckert4;
exports.geoEckert4Raw = eckert4Raw;
exports.geoEckert5 = eckert5;
exports.geoEckert5Raw = eckert5Raw;
exports.geoEckert6 = eckert6;
exports.geoEckert6Raw = eckert6Raw;
exports.geoEisenlohr = eisenlohr;
exports.geoEisenlohrRaw = eisenlohrRaw;
exports.geoFahey = fahey;
exports.geoFaheyRaw = faheyRaw;
exports.geoFoucaut = foucaut;
exports.geoFoucautRaw = foucautRaw;
exports.geoGilbert = gilbert;
exports.geoGingery = gingery;
exports.geoGingeryRaw = gingeryRaw;
exports.geoGinzburg4 = ginzburg4;
exports.geoGinzburg4Raw = ginzburg4Raw;
exports.geoGinzburg5 = ginzburg5;
exports.geoGinzburg5Raw = ginzburg5Raw;
exports.geoGinzburg6 = ginzburg6;
exports.geoGinzburg6Raw = ginzburg6Raw;
exports.geoGinzburg8 = ginzburg8;
exports.geoGinzburg8Raw = ginzburg8Raw;
exports.geoGinzburg9 = ginzburg9;
exports.geoGinzburg9Raw = ginzburg9Raw;
exports.geoGringorten = gringorten;
exports.geoGringortenRaw = gringortenRaw;
exports.geoGuyou = guyou;
exports.geoGuyouRaw = guyouRaw;
exports.geoHammer = hammer;
exports.geoHammerRaw = hammerRaw;
exports.geoHammerRetroazimuthal = hammerRetroazimuthal;
exports.geoHammerRetroazimuthalRaw = hammerRetroazimuthalRaw;
exports.geoHealpix = healpix;
exports.geoHealpixRaw = healpixRaw;
exports.geoHill = hill;
exports.geoHillRaw = hillRaw;
exports.geoHomolosine = homolosine;
exports.geoHomolosineRaw = homolosineRaw;
exports.geoInterrupt = interrupt;
exports.geoInterruptedBoggs = boggs$1;
exports.geoInterruptedHomolosine = homolosine$1;
exports.geoInterruptedMollweide = mollweide$1;
exports.geoInterruptedMollweideHemispheres = mollweideHemispheres;
exports.geoInterruptedSinuMollweide = sinuMollweide$1;
exports.geoInterruptedSinusoidal = sinusoidal$1;
exports.geoKavrayskiy7 = kavrayskiy7;
exports.geoKavrayskiy7Raw = kavrayskiy7Raw;
exports.geoLagrange = lagrange;
exports.geoLagrangeRaw = lagrangeRaw;
exports.geoLarrivee = larrivee;
exports.geoLarriveeRaw = larriveeRaw;
exports.geoLaskowski = laskowski;
exports.geoLaskowskiRaw = laskowskiRaw;
exports.geoLittrow = littrow;
exports.geoLittrowRaw = littrowRaw;
exports.geoLoximuthal = loximuthal;
exports.geoLoximuthalRaw = loximuthalRaw;
exports.geoMiller = miller;
exports.geoMillerRaw = millerRaw;
exports.geoModifiedStereographic = modifiedStereographic;
exports.geoModifiedStereographicRaw = modifiedStereographicRaw;
exports.geoModifiedStereographicAlaska = modifiedStereographicAlaska;
exports.geoModifiedStereographicGs48 = modifiedStereographicGs48;
exports.geoModifiedStereographicGs50 = modifiedStereographicGs50;
exports.geoModifiedStereographicMiller = modifiedStereographicMiller;
exports.geoModifiedStereographicLee = modifiedStereographicLee;
exports.geoMollweide = mollweide;
exports.geoMollweideRaw = mollweideRaw;
exports.geoMtFlatPolarParabolic = mtFlatPolarParabolic;
exports.geoMtFlatPolarParabolicRaw = mtFlatPolarParabolicRaw;
exports.geoMtFlatPolarQuartic = mtFlatPolarQuartic;
exports.geoMtFlatPolarQuarticRaw = mtFlatPolarQuarticRaw;
exports.geoMtFlatPolarSinusoidal = mtFlatPolarSinusoidal;
exports.geoMtFlatPolarSinusoidalRaw = mtFlatPolarSinusoidalRaw;
exports.geoNaturalEarth = naturalEarth;
exports.geoNaturalEarthRaw = naturalEarthRaw;
exports.geoNellHammer = nellHammer;
exports.geoNellHammerRaw = nellHammerRaw;
exports.geoPatterson = patterson;
exports.geoPattersonRaw = pattersonRaw;
exports.geoPolyconic = polyconic;
exports.geoPolyconicRaw = polyconicRaw;
exports.geoPolyhedral = polyhedral;
exports.geoPolyhedralButterfly = f3;
exports.geoPolyhedralCollignon = collignon$1;
exports.geoPolyhedralWaterman = waterman;
exports.geoProject = index;
exports.geoGringortenQuincuncial = gringorten$1;
exports.geoPeirceQuincuncial = peirce;
exports.geoPierceQuincuncial = peirce;
exports.geoQuantize = quantize;
exports.geoQuincuncial = quincuncial;
exports.geoRectangularPolyconic = rectangularPolyconic;
exports.geoRectangularPolyconicRaw = rectangularPolyconicRaw;
exports.geoRobinson = robinson;
exports.geoRobinsonRaw = robinsonRaw;
exports.geoSatellite = satellite;
exports.geoSatelliteRaw = satelliteRaw;
exports.geoSinuMollweide = sinuMollweide;
exports.geoSinuMollweideRaw = sinuMollweideRaw;
exports.geoSinusoidal = sinusoidal;
exports.geoSinusoidalRaw = sinusoidalRaw;
exports.geoStitch = stitch;
exports.geoTimes = times;
exports.geoTimesRaw = timesRaw;
exports.geoTwoPointAzimuthal = twoPointAzimuthal;
exports.geoTwoPointAzimuthalRaw = twoPointAzimuthalRaw;
exports.geoTwoPointAzimuthalUsa = twoPointAzimuthalUsa;
exports.geoTwoPointEquidistant = twoPointEquidistant;
exports.geoTwoPointEquidistantRaw = twoPointEquidistantRaw;
exports.geoTwoPointEquidistantUsa = twoPointEquidistantUsa;
exports.geoVanDerGrinten = vanDerGrinten;
exports.geoVanDerGrintenRaw = vanDerGrintenRaw;
exports.geoVanDerGrinten2 = vanDerGrinten2;
exports.geoVanDerGrinten2Raw = vanDerGrinten2Raw;
exports.geoVanDerGrinten3 = vanDerGrinten3;
exports.geoVanDerGrinten3Raw = vanDerGrinten3Raw;
exports.geoVanDerGrinten4 = vanDerGrinten4;
exports.geoVanDerGrinten4Raw = vanDerGrinten4Raw;
exports.geoWagner4 = wagner4;
exports.geoWagner4Raw = wagner4Raw;
exports.geoWagner6 = wagner6;
exports.geoWagner6Raw = wagner6Raw;
exports.geoWagner7 = wagner7;
exports.geoWagner7Raw = wagner7Raw;
exports.geoWiechel = wiechel;
exports.geoWiechelRaw = wiechelRaw;
exports.geoWinkel3 = winkel3;
exports.geoWinkel3Raw = winkel3Raw;
Object.defineProperty(exports, '__esModule', { value: true });
})));
<!DOCTYPE html>
<meta charset="utf-8">
<style>
.stroke {
fill: none;
stroke: #000;
stroke-width: 3px;
}
.fill {
fill: #fff;
}
.graticule {
fill: none;
stroke: #777;
stroke-width: 0.5px;
stroke-opacity: 0.5;
}
.land {
fill: #222;
}
.boundary {
fill: none;
stroke: #fff;
stroke-width: 0.5px;
}
</style>
<svg width="960" height="484"></svg>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="d3-geo-projection.js"></script>
<script src="https://d3js.org/topojson.v1.min.js"></script>
<script>
var svg = d3.select("svg"),
width = +svg.attr("width"),
height = +svg.attr("height");
var projection = d3.geoInterruptedHomolosine()
.rotate([-15, 0])
.fitExtent([[10,10], [width-30, height-10]], {type: "Sphere"});
var graticule = d3.geoGraticule();
var path = d3.geoPath()
.projection(projection);
var defs = svg.append("defs");
defs.append("path")
.datum({type: "Sphere"})
.attr("id", "sphere")
.attr("d", path);
defs.append("clipPath")
.attr("id", "clip")
.append("use")
.attr("xlink:href", "#sphere");
svg.append("use")
.attr("class", "stroke")
.attr("xlink:href", "#sphere");
svg.append("use")
.attr("class", "fill")
.attr("xlink:href", "#sphere");
svg.append("path")
.datum(graticule)
.attr("class", "graticule")
.attr("clip-path", "url(#clip)")
.attr("d", path);
var marker = svg.append("path")
.attr("fill", "red")
svg.on('mousemove', function() {
var mouse = d3.mouse(this);
marker.attr("d", path({type:"Point", coordinates: projection.invert(mouse)}));
});
d3.json("https://gist.githubusercontent.com/mbostock/4090846/raw/d534aba169207548a8a3d670c9c2cc719ff05c47/world-50m.json", function(error, world) {
if (error) throw error;
svg.insert("path", ".graticule")
.datum(topojson.feature(world, world.objects.land))
.attr("class", "land")
.attr("clip-path", "url(#clip)")
.attr("d", path);
svg.insert("path", ".graticule")
.datum(topojson.mesh(world, world.objects.countries, function(a, b) { return a !== b; }))
.attr("class", "boundary")
.attr("clip-path", "url(#clip)")
.attr("d", path);
});
</script>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment