-
-
Save zeffii/eb849038ecda0a64595b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ##### BEGIN GPL LICENSE BLOCK ##### | |
# | |
# This program is free software; you can redistribute it and/or | |
# modify it under the terms of the GNU General Public License | |
# as published by the Free Software Foundation; either version 2 | |
# of the License, or (at your option) any later version. | |
# | |
# This program is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
# GNU General Public License for more details. | |
# | |
# You should have received a copy of the GNU General Public License | |
# along with this program; if not, write to the Free Software Foundation, | |
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | |
# | |
# ##### END GPL LICENSE BLOCK ##### | |
import bisect | |
import numpy as np | |
# spline function modifed from | |
# from looptools 4.5.2 done by Bart Crouch | |
# calculates natural cubic splines through all given knots | |
def cubic_spline(locs, tknots): | |
knots = list(range(len(locs))) | |
n = len(knots) | |
if n < 2: | |
return False | |
x = tknots[:] | |
result = [] | |
for j in range(3): | |
a = [] | |
for i in locs: | |
a.append(i[j]) | |
h = [] | |
for i in range(n-1): | |
if x[i+1] - x[i] == 0: | |
h.append(1e-8) | |
else: | |
h.append(x[i+1] - x[i]) | |
q = [False] | |
for i in range(1, n-1): | |
q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1])) | |
l = [1.0] | |
u = [0.0] | |
z = [0.0] | |
for i in range(1, n-1): | |
l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1]) | |
if l[i] == 0: | |
l[i] = 1e-8 | |
u.append(h[i] / l[i]) | |
z.append((q[i] - h[i-1] * z[i-1]) / l[i]) | |
l.append(1.0) | |
z.append(0.0) | |
b = [False for i in range(n-1)] | |
c = [False for i in range(n)] | |
d = [False for i in range(n-1)] | |
c[n-1] = 0.0 | |
for i in range(n-2, -1, -1): | |
c[i] = z[i] - u[i]*c[i+1] | |
b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3 | |
d[i] = (c[i+1]-c[i]) / (3*h[i]) | |
for i in range(n-1): | |
result.append([a[i], b[i], c[i], d[i], x[i]]) | |
splines = [] | |
for i in range(len(knots)-1): | |
splines.append([result[i], result[i+n-1], result[i+(n-1)*2]]) | |
return(splines) | |
def eval_spline(splines, tknots, t_in): | |
out = [] | |
for t in t_in: | |
n = bisect.bisect(tknots, t, lo=0, hi=len(tknots))-1 | |
if n > len(splines)-1: | |
n = len(splines)-1 | |
if n < 0: | |
n = 0 | |
pt = [] | |
for i in range(3): | |
ax, bx, cx, dx, tx = splines[n][i] | |
x = ax + bx*(t-tx) + cx*(t-tx)**2 + dx*(t-tx)**3 | |
pt.append(x) | |
out.append(pt) | |
return out | |
def interpolation(v, t_in, mode='SPL'): | |
''' | |
input | |
v : list, vectors to interpolate | |
t_in : list, interpolation points [0.0 <= t_in <= 1.0] | |
modes : string, | |
('SPL', 'Cubic', "Cubic Spline"), | |
('LIN', 'Linear', "Linear Interpolation") | |
output | |
_ : list, interpolated coordinates | |
''' | |
pts = np.array(v).T | |
tmp = np.apply_along_axis(np.linalg.norm, 0, pts[:, :-1]-pts[:, 1:]) | |
t = np.insert(tmp, 0, 0).cumsum() | |
t = t/t[-1] | |
t_corr = [min(1, max(t_c, 0)) for t_c in t_in] | |
# this should also be numpy | |
if mode == 'LIN': | |
out = [np.interp(t_corr, t, pts[i]) for i in range(3)] | |
return list(zip(*out)) | |
else: # SPL | |
spl = cubic_spline(v, t) | |
return eval_spline(spl, t, t_corr) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment