Last active
May 14, 2025 05:02
-
-
Save amauryma55/87a17391944bb2e95a771b7f7a440826 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Predicciones y probabilidades | |
y_train_pred = model.predict(X_train) | |
y_train_proba = model.predict_proba(X_train)[:, 1] | |
y_test_pred = model.predict(X_test) | |
y_test_proba = model.predict_proba(X_test)[:, 1] | |
X_oos = df_model_monop[['var_1', 'var2']] | |
y_oos = df_model_monop['target'] | |
y_oos_pred = model.predict(X_oos) | |
y_oos_proba = model.predict_proba(X_oos)[:, 1] | |
print("\n--- Entrenamiento (Train) ---") | |
print("Accuracy:", accuracy_score(y_train, y_train_pred)) | |
print("F1 Score:", f1_score(y_train, y_train_pred)) | |
print("AUC:", roc_auc_score(y_train, y_train_proba)) | |
print("AR:", 2 * roc_auc_score(y_train, y_train_proba) - 1) | |
print("\n--- Prueba (Test) ---") | |
print("Accuracy:", accuracy_score(y_test, y_test_pred)) | |
print("F1 Score:", f1_score(y_test, y_test_pred)) | |
print("AUC:", roc_auc_score(y_test, y_test_proba)) | |
print("AR:", 2 * roc_auc_score(y_test, y_test_proba) - 1) | |
print("\n--- Fuera de muestra (OOS) ---") | |
print("Accuracy:", accuracy_score(y_oos, y_oos_pred)) | |
print("F1 Score:", f1_score(y_oos, y_oos_pred)) | |
print("AUC:", roc_auc_score(y_oos, y_oos_proba)) | |
print("AR:", 2 * roc_auc_score(y_oos, y_oos_proba) - 1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment