Skip to content

Instantly share code, notes, and snippets.

@7shi 7shi/17.ipynb
Last active Jan 14, 2018

Embed
What would you like to do?
[Jupyter] 円周の17等分
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from sympy import *\n",
"init_printing()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"x=Symbol(\"x\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t1=solve(x**2+x-4,x)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAAAkCAYAAABFY7UnAAAABHNCSVQICAgIfAhkiAAABaFJREFU\neJztnWloHVUUgD9tYk1MLUStrcFaY0BFsVg1Li11omJd/6iUYkpxRXEFC/aPSDRiRSgirWvUPo1b\naW0FUesfeSqCKDVqiqgFbUXcBRfqWlt/nHlkMs6bd2fezNyZeeeD4WXu3LlzXs6cu5x77n2gKIrS\nJHsFpE0BOjznf7uHoihKB1JH1NgJ7AnK6ABfAe+4xzVpS6YoSmF4kIm64VdgTr2MDjCUhUQl4ESg\n27YQSixUd81Txa1I9rYqRvG5E/gJ6dplcSjJobpLEK1I4nMO8AbiZ8rqUJJBdZcwbbYFKDDXAUtt\nC6HEQnWXMHnpkUwDNgCzbQtiyHzgI8TZpBQL1V1jErFHh2ydrVe5z9tDiAc4Z6wHDrIthIeLbAtQ\nIFR34USxx2pYHgc7szZFqUjmAvfbFsLDUcCLtoUoCKo7cyJVJHkZ2hSJ5cAq20J4uBR4zpfWD2wE\nXgXGgceBnozlyiOqu5Qom7O1HfgnxfL7kCjfLw3ydiJBO8cFXDsXeBj4EPgD+AvY7bn+LhL4Y8IF\nwErP+TzgLmAx8DPQBbwCjCEv6XbDcsuG6i5jHIo7tBkh3dr7EaQ72oiTgPeoHz+wnPrxBruBRYby\n9AOjvrSXEaPxcrxb9vOG5ZYR1V00Wnpo0+4ecZkWcq3Hvf5JSJ6jkZfheuDfkHx9iEd8H2TdQi3W\nYAGwGnjNUN5B4Flf2unA68AMT9oY0sKdZVhuEVHd5QyH4vZIKjHL6ASeAR4IybMKOCGiLPVatTUB\nabVubEfAtSCmINOY/uHpONLdPtyX/i2ywKpsqO7SoXA9kkHgIffve4AbMn5+G3AL8DmwDNg/IE83\notwtCT0z6DveC9yOjLtNOAN4C9jlSz8FOAz4wpN2CHAwMn4vE6q75EnMHh2Ku2ivQvxeTTfwO3Bz\nwLU7gIEYspiusZiPOPCisNa9z4S7ke76aRGfURRUd3aoksM4kiSo0NzwaAT4lMlrI7qQsXMcWUxf\nxi1Ek3tf4APM1nD0Ar8hswFlRnWXPVXc7x53+ncu8s82XYw0Blwe81lBPOnK4Gc24g0P2ojpShp3\nb9cgkX2LgM1u2rWIxz8tzkTG1tsj3HM+EmfQ6GWfijj0RoDb4giXAmm9O62qO9u2WBeH1u2RALzJ\nRCs2FfHCx1m9WcGsVXsBeCJi2RuAYw3yjSLL5VsF1V22VMmJszWP+zisRoKO+oDLgKdSlKMdaUG/\niXDPdKTntbVBviHgM8QJWGNZFOEKiOquOWLbo+2KJI/7OGwCvgZuAi4h3UCgfmA/4McI91yMhFCH\nsRTR7bAvfYHv/EhkzF4WWkl3aRDbHssWIp8Eu5Dpr2Fk34qw4KRmqUUx/hnhniXA1SHXFwL3Id36\npz3pbUxuUQaQ4KeNyAteBlpFd7lDK5JgHkUcUpUmyqi19J3I1GQQtQhG0136ZyJj/x0heTYh06GD\nAde83v/vkNY0SqBWEWgF3eWOPFQkJyNz5NORufVhxGlmkx/4/5oHE2YgTrIe4Bg3bQcyJn4MicD0\nsg34BVkAZsISYF2DPAcYlvUxsi/HkGH+otAKukuTxOzRIbuXq4vJqx8XIy1A3IV382hurU3eeRs4\nMOEyVzbOoiRAGrpLmqj2WCUnsza9wArgCPd8MzIvbxr15+d90t1GwCZ9yOKtKM69RgyQXOi4Up80\ndJcGse3RdkUyDpyKrJUAONT93GZHnFwTtAlOM7QBZyNxDUq6JK27tEjUHh3sjZtHydcOVnniJaTr\nqRSPouqukT1WaTJEPg2uQIJ7VtgWJKdcaFsAJTZF1F0ke7Q9tKlxnvt5KzJFNseeKIrS8kS2xzxU\nJAuBWcjGMDORX0GbZVUiRWldErNHB/gemT/fCtyYjHyB9CI/VOSP5w/aoEZRlHQxsce1TNQNO9HR\ng6IoiqIoiqIo5eE/lcDRXjoir/0AAAAASUVORK5CYII=\n",
"text/latex": [
"$$\\left [ - \\frac{1}{2} + \\frac{\\sqrt{17}}{2}, \\quad - \\frac{\\sqrt{17}}{2} - \\frac{1}{2}\\right ]$$"
],
"text/plain": [
"⎡ 1 √17 √17 1⎤\n",
"⎢- ─ + ───, - ─── - ─⎥\n",
"⎣ 2 2 2 2⎦"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t1"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a8_1,a8_3=t1"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t2=solve(x**2-a8_1*x-1,x)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAArCAYAAADBogTlAAAABHNCSVQICAgIfAhkiAAACkRJREFU\neJztnXusHVUVh7+We0sflyqoWKHBizRQjbEVS0NE8BaILWKFYE0INbWgCKKmRiSp0ZgjiBa10QjW\nByYe8B0JMRAtShRQUCOPquALX5OoBEFA8VWgtP6xZnLPvZ0zZ2b2zOw95/y+5KRz57H36uzfmv2Y\nPWuDEEIIIYQQQgghhBCiXrYCDwBR/Nvg0xgxUlwC7NNv6H6iOuQjw/kTIo3bmW6LPZp1YgfYXLc1\nQqRwAzDHtxFCBIx8RIjRJEo25no0QohelmIjvep9CpGOfEQIoYabCIbXYqMJQoh05CNCCDXcRDCc\nDHzPtxFCBIx8RAihhpsIgsXAE/FPCLE/8hEhBKCGmwiDVwM7fRshRMDIR4QQgBpuIgxOB77l2wgh\nAkY+IoQA1HBzRXF+3JkHLAIe821ISVYhHYh6kY/IR4Q7Q6NBNdzc2AkswOIq1f0bVqaAW3wb4cCl\nNKeBYdaB6M8U8hH5iHBlaOprNdzKsw64Ddjt25CWcwbtDXEgDYgmkI8I4cbQ67CDVk7Iww3Yl16i\nPHOAG30b4YA0IOpGPiKEO8OgwyjZCGHE7SDgOuAI34YU4ATgF8Djvg1pOauAu3wbURJpQDSBfESE\nhOrrQOnQ3Ijbm+P89gGTDeVZBd8AnuPbiJizfBvgwAeBlb6NKElIGmgrbdZuU8hHRpuQfET1tTsu\n5RklG75H3D6PCaFNrMDWC3zYtyHAcmCTbyMcWAn8zLcRJQhJA22l7dptCvnI6BKaj6i+dqOy8hyr\nIpER42LgfTnOWwj8BHhJyrHTgM8APwf+h0VD39tz/KfAjhx5nAN8dcA57wbGgQ/nSK9K5mLD6VGf\n40cBf2jAjtXAVuxroqXYvX0/8FeHNEPSQFUcD1wQ27Ig/l0O3DvgurL6Clm7TSEfkY9kIR9xJyQd\n1lqeHZr/OKGKodfxCuwYxDKs1zGI44A76R/P5WL6x3/ZC6zNac892MOjH88H/kP5XpLLPd0OfCLj\n+LuwtRfr5Fjgu8Az478ngB8AD1Feb6FpYDZlyuyl2OTd+T37dmBzQrJe07noq27ttgH5iHwki1B9\nRPW1n/o6SjZ8vyqtkh3A4TXncQnwsYzjL8Sim78NeDrjvGVYT3secADTsV9eAVwJfCeHLauBX2I9\ngH68F+tJlKXsPd2ITQhdl3HOSVgFUSeXARcB/4j//jewBZvvsK1kmiFpII0yZbYJWB//Er6NTUQ+\nL+O6svpqQruhIx+Rj2Qx7D6i+np/cpfnMDXcxnFvxR+Ucezw+PhvMs75NbY0zeYB5z0N/Bl4iukh\n1wms4LbmtHUj8JWM42cB38+ZVj/K3NMxrBe6HTiG9J7Zs7GKYo+LcTl4JXYPDu3ZtyvO+9Q+17RJ\nA2mUKbNdWJn9s2dfch/+2+caF301od2QkY/IRwYx7D6i+nomzuXZoZ2vSrsOaSwEvgx8KuOc7cDL\nCtpTZOmLHdin/3k4APu8ud8cxQmmh4j3UX4ovUv5e3owVulcmHJsM7ChZLpFuBebj3DkrP0PYkPS\nvbRNA1l5TjqmAfBRrPxWpBxz0VdT2m0D8hH5SBqh+4jqaz/1dZRs+B5x2wh8Ot7eBrzdgw1j2FyS\nP2LD4WlB+g7BHmx312TDCVhZ5I3XdDLwQ/r3xt+D/8mqj2GTNtNeBa0DbmrAhuOxeQN/6tl3GPBc\nzLaENmqgTo7CGg7vwCbkzsZFX23QblPIR4ohH3FP2wXV10aQ9XWHdq6c0MWtF3AINuS9JeXYB4A1\nJezJ24K/m2K2fwETTxorMSEk+BpxA/sy7XFmDokvwOLq+OJD2ND3y1OOtUkDWXmWTedMbM7G/ZiG\n0tbcc9VXU9ptC/IR+chsRsFHuqi+hmLlGWVl0mE0G24AVwO/ZaYzTmATGMvYk0cIpwC/KpDufCyu\nU9oDYy5wDTaJMsFnw211nP9Uz74zgLc4pOnCC4B/YUFN+9EGDQzKc9IxjXnYouZ3AM/q2e+qrya1\n2xbkI/KRXkbFR7qovi5anlGyUSaO2wrsP5lmSBq7gHNL5NOPa0ifU3AE9hB8MuXYm8g3bHoVFh16\nLdOvKS4EPlvczNxchMWPycvpwE7SRXYBVjZp9yCLuu7pXcAj2GufW+N968kXVweq1dqB2OTQqwfk\n3wYNQL1+8CTWa70Fi1/0+nh/WX0l1KHdpqjruScfyYd8pFzaqq+rJYT6OpUOozviBvb5fdJiPxD7\n1Dev6GfbM6gFP459fn95gXSvA16csn8JNoQ/G58jbmABB5PI73OxWEg++CJwac5zQ9fAoDwnC16z\nnP0DTy5mOk7RBNXoq0nttgn5SDbykeHzkS6qr4uWZ5Rs+Fw5Ic+wZJkCcOVK4OtY7JZTgGsp9rVJ\nEVYDi4C/5zz/GVhP5b6UY6diD5dv9uxL5s2cjb1Lvxa4vpSl5bkpzv952D39UcP5gznC/VjMqoRN\n2P1II2QNVM1irJc9joWmSCL1J3GN5mBfRbnqq43abQr5SDbyEf8+ovo68Pq6w2iPuI0BfwE+CdyM\nOWRZewYJ6I3xOW/NmeZ5FItfNIn/EbclWI/0XCwY4nLH9IryBtJHET6XcU3IGsiT52SB8+dj8Yl+\nh034TVgV23VnxrWT5NdXldo9hpkR7NuOfCQb+Yh72qHRRfX1bCZpwYhbqOzBPnlOIopnRVTOIqlY\nFtI/QGMS9DLvO+6zgfML2DA+618fPIjFsFmH9VayAh1WzUnAx7Hh8y/17B8j20lD1kDV7MbiUT2E\nhadI2ILF8cp6SBXRV1XaXYMFqrweeF2B9EJGPiIfgXY+330Tsg4bLc8OfkbcrgBOdLi+SzUteLDl\nXn5P8V79odgD8D6m1zJ7GJvAujHl/DOxCOV5AvktAW7LacfiOM8HYht2Az+O8ytCl2ru6bbYhisq\nSKsIj9B/jbnLMq6DMDWQhy7lymwz8DWs8r4Ze/1wdJ9zi+qrSu2+CLufUc702oJ8RD7S9PPdBdXX\n2dRRnlFWIh2ab7idCPyNmZ/EF6VLdUIIkXdiPYom6VLNPZ3CBJkWF0pUS5fw/KAO7XYqTs83U8hH\nmqLLaPhIXai+Hkwd5RllHezQbMNtMRaB+VbchHAswz1kfAe2fmGTVHVPx7HYN75X6hgFQvSDOrQ7\nbKsryEeaY1R8pA5UX+ejjvKMko0QHhLnY3GDXLkHm0A6jCzDhmib/qqqqnv6FPaKa++gE4UzoflB\nHdpdQ33L2fhCPtIco+AjdaH6ejC1l6fvhtt67B3zE57tCJ1zsFhPQrSNqrU7BrwKi48kxDDQlue7\n6ut81F6ePhtuhwEHkx7jRMzkOGbGexGiLVSt3T3MXNtPiLbThue76uv81F6ePsOBrMW+vEjinByN\ntVQXUW6tsWFmvW8DhCiJtCtENm3wEdXX+fFSnh38hAOJcJvsKIQQQoj6iVB93TRR1sGtWDyRKP5t\nqNmYpcBHsNglNwKvqTk/IYQQQhRH9XWz3M50W+xRr5YIIYQQQgghhBBCCCGEEEIIIYQQQgghhBA5\n+D+hyVpO73F/nwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left [ - \\frac{1}{4} + \\frac{\\sqrt{17}}{4} + \\frac{1}{4} \\sqrt{- 2 \\sqrt{17} + 34}, \\quad - \\frac{1}{4} \\sqrt{- 2 \\sqrt{17} + 34} - \\frac{1}{4} + \\frac{\\sqrt{17}}{4}\\right ]$$"
],
"text/plain": [
"⎡ _____________ _____________ ⎤\n",
"⎢ 1 √17 ╲╱ -2⋅√17 + 34 ╲╱ -2⋅√17 + 34 1 √17⎥\n",
"⎢- ─ + ─── + ───────────────, - ─────────────── - ─ + ───⎥\n",
"⎣ 4 4 4 4 4 4 ⎦"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t2"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a4_1,a4_9=t2"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t3=solve(x**2-a8_3*x-1,x)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAArCAYAAABhPWwLAAAABHNCSVQICAgIfAhkiAAACnVJREFU\neJztnXusHUUdxz+33Fv6uFRFwQoNXqWBaoytWBoigi0QW8UKwZoQampBEURNjUhSoyEHKlrURiNa\nUUw84AONhBiIghIVENTIoyr4fp1EJQgCgq8ipfWP327uubd7dmcf58zMOd9PctLTfczOnfPZmdnZ\n2d+CEEIIIYQQQgghhBCDYivwANBJPht8ZkaMFBcB+/QJ7iOaQ46H+xEiizuY7g89mrdhC9jc79wI\nkcENwJjvTAjRR+S4EPHSSb/M8ZgJIbpZgo146gpQDCtyXIghQZ0nEQqvx67KhRhW5LgQQ4I6TyIU\nTgK+6zsTQvQROS7EkKDOkwiBRcCTyUeIYUSOCzFEqPMkQuC1wE2+MyFEH5HjQgwR6jyJEDgV+Kbv\nTAjRR+S4EENEzJ2nlSgGyDAwF1gIPObp+PJI9BvfjoM8F3KgUcZ9Z6AGlwLzgd2+MyJqsRr4vsfj\nyyPRb1bj13GQ50IONEqsI0/rgNuQBMPAafh7fFseiUHg03GQ50IODIQW4UcYvwF7ekXEzRhwo8fj\nyyPRb3w7DvJcyIGm6KRfYhx5Oh74OfCE74wEzEHAdcARvjNSwErgbk/HlkdiEPh0HOS5kAMuNNJm\ntgh75OnrwCG+M9HFGb4zMIu3Yr/hPmDKa06K+SCwwtOxQ/MoRkJzP0R8Og7yvAli9zw0B0IrzzJt\nZif9EtvI03Ls3VAP+85IwjJgk+9MzOLzmAgxsAL4qYfjhuZRjITofoj4chzkeRPE7nloDoRYnpXa\nzNietrsQ+IDjtguAHwMvzVj3GuBK4GfAf7Gov3u71v8E2OlwjLOAawu2eS8wAXzYIb1hYg42BNrp\nsf5I4A8O6awCtmJPiSzBfpuLgb/WyFtoHjXFccB5SV7mJ5/LgPsK9qviqNxvznHw67kc703snodW\n18Venrm0CPO23VKsh+jCscBd9I41cSG9Y1PsBdY6Hude7OTtxfOBf+NnJKiJ23YTNfbdAXwiZ/17\nsHd95XEM8B3gmcn/J4HbgYeo/reF6NFsqpT7y7BJofO6lu3E5jnk3Taq6mjI7g+KJhwHv57L8Xxi\n9jzEui7k8hza23YXAR8r2OZFWBTfdwBP52y3FLtinAscgD0RMwa8ErgC+LZDflYBv8B64b14P9ab\nj5WdwOEV9tuITVJcl7PNiVgDkcc24ALgH8n//wVswe7fb6+QLwjPoyyqlPsmYH3ySfkWNhHynJz9\nqjg6Cu4X0ZTj4MdzOV5M7J6HVtfFXp4zCKnzdFDOusOT9b8uSONX2GsQNhds+zTwZ+AppoceJ7Ef\nbqtDXsEqz6/krD8D+J5jWqEyQfkrxHHsSnAHcDTZPfnnYA3FnoK0XoWV4aFdy3Yl+57SY5/YPMqi\nSrnvwsr98a5laVn8p8c+VR0dBffzaNJx8OO5HC8mdM9jq+tCL8/atBjsbbsFwJeBT+dsswN4ecl0\n25QLEb8Te6zYhQOwRz97zRmbZHq4dB/hDkEW0a6RxrOwhuP8jHWbgQ0OadyH3Vt/wazlD2JDu93E\n6FHeMadqpgHwUew3WJ6xrqqjMbg/KJpwHPx73kaOzyZkz2Os60Iuz5SobtuNY/MC/ogNyWYF8ToY\nq1Tu6WM+jsfKwjUey0nAD+h9Vfk+/E122wh8Jvm+HXinp3w8hk0izLqtsQ642SGN47B74H/qWnYY\n8Nwk7ZRYPeonR2IN+LuwSZ6zqepoyO4PmiYch7g8HwXHIVzPQ3AA1GZm0mLwE8YPxoZdt2SsuwRY\nUyHNNu696HsodxX0BUyeLFZgIqTEfPXdpt7V4cXYMHv38Px8LO5IVT6EDSG/ImNdbB7lHbNqOqdj\ncxB+i3k4lrFNHUdHxX1X+uE4DNbzNnJ8NqF7HltdF3p5utLJW9nCz9N2VwG/YeaJMIlNZqtCGzcR\nTgZ+WSLdeVjclqwTdg5wNTapLiVkEYpoU6+iXIX9/au7lp0GvK1iei8E/okFHuxFLB4VHXOqZhpz\nsZfR3gk8u2t5HUdHyX1XmnYcBu95GzneTSyex1LXxVKeLnTSL1XiPC3HCjmrILLYBZztsN2nsEif\na5ke7j4f+GzJ/JXlAiy2hSunAjeRLdl5WNn8r2Qe+lWmrlxN9pyBI7DGIevveQvFw8J3A49gtzBu\nTZatxz3uSDcHYpMNryrYPxaPoH/lTrLvJVjjciXwxmR5VUehP+4Pin6dY006DmF7PgqOQ/Oeq80c\nvjYzkxb+4jzdznSv+UDs8UfXwplNm+Je9AT2WPBlJdK9DnhJxvLF2FDybELuRRfRpv7V4bVMR1ie\nQ/W3y38RuNRx2xg8KjrmVMl9lrF/cLtFTMdhmaS+o6Pkfhmachz8eN5GjncTk+cx1HUxlWcRnfRL\naBHGrwC+hsWUOBm4hnKz/8uyClgI/N1x+2dgV0z3Z6w7BTu5v9G1LJ0HcSZ2X/ca4PpKOXXDpayq\nnlhVuRn7+5+H/a4/rJBGC5vfsK1r2SasPLMI3aOmWYRdWU1gj86nUa3TuC1j2NMudRwN3X2fNOE4\nhO35KDgO8Xkeel0Xenk22ma28DfyNA78BfgkcAt2MlSlTXHBvDnZ5u2OaZ5DudgmU4Tdiy6iTf2R\np8XYVeHZWMC2ZSX3fxPZV+Kfy9kndI9cjjlVYvt5WPyV32ETSVNWJvm6K2ffKdwcbdL9o5kZJTp2\n6joOfj1vI8dTYqvjQ6/rYivPIjrpl9BGnvZgjwymEXfzIp4WkVbOC+gdQC0NSud6v/VM4NwSeZiY\n9e8o8iAW32MddsVSFLStmxOBj2ND0V/qWj5O/kkeukdNsxuLd/MQ9vh8yhYsTlBeRefqaFPur8EC\n4V0PvKFEeiFTx3Hw77kcnya2Oj70ui628qxFC7/vtjsE+D3VrkwPxSqg+5l+787D2ITCjRnbn45F\n8XUJ9LUYuM0xH4uSYz6Q5GE38KPkeIPkcuCEGvu3aeax5O1YGVxecr9H6P0+pW05+0G4HrnQplq5\nbwa+ijXAt2DD+Uf12LaMo026/2KsLDuO6cVCVcfBj+dyfH9irOMh3LouxvIsajM7eTu3CPPFwL55\nN9azj4UTgL8x8xHqsrRppvO0GjshsmLWiP1p00y5N0U/3G81nJ5vViPHy9AmLMchvjo+dGIrT5c2\ns5OXQAt1nrK4E3tfVQwswqKk3kq9ztMxNDN8OoHFBfEd0T4Wmir3puiH+8MWhVyOlyM0xyGuOj4G\nYipP1zazk37Rie7GUmyo0teTJmU5F4sTU5d7sUmadXkKu12zt2hDATRX7k3QD/fX0N9XR/hAjpcj\nJMchvjo+dGIrz9JtpjpPbpyFxXKJgfXYPewnfWdEDAVNuz8OvBqL/SJEKMRUx8dATOVZqc1U58mN\nY5kZiyJUDsPe9J4VU0OIKjTt/h5mvsdKiBCIpY6PhVjKs3KbGVqoglBZ7zsDjqzFnnBI42ochV0B\nLKT6+47EaBOL+0LUQZ43Syzl2Wib2UITxoeFDvUmjAshhBCjQocaT9ttxWItdJLPhkayJAbJEuAj\nWKyMG4HX+c2OEEIIESx5beYdTPeHHh10xoQQQgghhBBCCCGEEEIIIYQQQgghhBCiCf4PwdIoS+b8\nqRMAAAAASUVORK5CYII=\n",
"text/latex": [
"$$\\left [ - \\frac{\\sqrt{17}}{4} - \\frac{1}{4} + \\frac{1}{4} \\sqrt{2 \\sqrt{17} + 34}, \\quad - \\frac{1}{4} \\sqrt{2 \\sqrt{17} + 34} - \\frac{\\sqrt{17}}{4} - \\frac{1}{4}\\right ]$$"
],
"text/plain": [
"⎡ ____________ ____________ ⎤\n",
"⎢ √17 1 ╲╱ 2⋅√17 + 34 ╲╱ 2⋅√17 + 34 √17 1⎥\n",
"⎢- ─── - ─ + ──────────────, - ────────────── - ─── - ─⎥\n",
"⎣ 4 4 4 4 4 4⎦"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t3"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a4_3,a4_10=t3"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t4=solve(x**2-a4_1*x+a4_3,x)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACEgAAAA5CAYAAAAvUIxmAAAABHNCSVQICAgIfAhkiAAAGoVJREFU\neJzt3XmwZFV9wPHvDAODbFEUREUdhCgmKqiARNQaFxTjAqVScSEGUyl3glFRNEafEYNiNBpF45bc\nuIIYNSgGNJbRKg0qkIiaKKKgZUBFxAURFJj8cbrr9evp7nf3c87t76fq1czr5d7f9P2dc3+nz5l7\nQZIkSZIkSZIkSZIkaUm9FLh26udFUSOSJEmSJEmSJEmSJEma76tsv9bhTuMnN815007AecCLJx67\nuqMAJUmSJEmSJEmSJEmSmnoMYb3D2LeBjeNf5i2QAPglcGlHQUmSJEmSJEmSJEmSJLXp+4ue3Ljo\nSUmSJEmSJEmSJEmSpCFwgYQkteMOwN1iByFJkiQpGscEkiRJkiQlbtEtNiRJ5R0NnB47CEmSJKmG\nDbEDGAjHBJIkScqVYwJJS8MFEpLUjvsCuwLXxQ5EkiRJUhSOCSRJkiRJSpy32JCkdvhFqCRJkrTc\nHBNIkiRJkpQ4F0hIUnN7AlfHDkKSJElSNI4JJEmSJEnKgAskJKm5+wFfjh2EJEmSpGgcE0iSJEmS\nlAEXSEhSc4cD58cOQpIkSVI0jgkkSZIkScqACyQkqbm7ApfEDkKSJElSNI4JJEmSJEnKgAskJKmZ\nDaM/t0WNQpIkSVIsjgkkSZIkScqECyQkqZkDgW/FDkKSJElSNI4JJEmSJEnKhAskJKkZ7zUsSZIk\nLTfHBJIkSZIkZcIFEkrRSYT/gSPl4DDgS7GDkCRJkhSNYwJJkiRJ6p/ziaplU+wApBkeCJwWOwi1\nbsP6L8nSnsA1sYMYsJOwP+jbUNtq18zVvJjn3dsWOwCVZnuQmnNM0D1rrX55bqjPXM2Lud4t20Ne\nbA+ScnQanmuGppfzkQsklJp9gSuwIFMedgOujR3EwD2QcLUjJ9qUOnNVWuvjwNHYJiQNn2OCflhr\nKRfmqrTK9iBJ6tK+wNuBZ8YORPnxFhtKzWOBs2MHIZV0KHBB7CAGbLxgyoG0UmeuSmvZJiQtE8cE\n3fO8olyYq9Iq24MkqWvOJ6o2F0goNQ8BPhM7CKmkw4HzYwcxYBY4yoW5Kq1lm5C0TBwTdM/zinJh\nrkqrbA+SpK45n6jaXCChlOwB3DD6kXJwT+Di2EEMmAWOcmGuSmvZJiQtE8cE3fO8olyYq9Iq24Mk\nqUvOJ6oRF0goJX8I/FvsIKQKdgBuih3EQFngKBfmqrSWbULSsnFM0C3PK8qFuSqtsj1IkrrmfKIa\ncYGEUvIo4JzYQUglbQEujxzDkFngKBfmqrSWbULSMtmCY4KueV5RLsxVaZXtQZLUNecT1YgLJNpx\nCLBn7CAytxOwK3BN7ECkkrzXcLcscJQLc1VayzYhaZk4Juie5xXlwlyVVtkeJGk25xLb4XyiGnOB\nRDv+Grga2NbTzxBtBT4bO4gGDqG/4z/UHMjN/YAvxQ6iJ33nbJcFjm11uNo6tlWkWoyb58OW8vFN\ntU2k+nmpPym3G+VtmcYEQ6q17BOGbUi52pS5PlwpH1vbg+0hZeaAYnMusR1byXc+0fNR4laAInIM\nuTgKeHHsIAbgdODOsYNo4JPAzrGDUKtuD9xpwfMf6iuQBPSd3w8HTuho27bV4YpxbLvM1SbM82FL\n+fjaJpQqc0B1OSZYNaRayz5h2IaUq02Z68OV8rG1PShl5oFici6xPTnPJ9oPxbONcJtMwCtItOHZ\nwNtiB5G5DYQvnb4XO5CajgI+B1wfOxC16jTgD+Y8txm4ocdYYoqR30cDZ3ewXdvqcMU6tl3lahPm\n+bClfnxtE0qROaAmHBMEQ6q17BOGbUi52pS5PlypH1vbg1JlHig25xLbkfN8ov1QBlaIcwWJ3YEP\ns/h/aKTkCOCU2EEMwKHAK2IH0cDZwB6xg1CrjgB+QfhCdJbDgef3F05Ufef3BuDjHW3btjpcMY5t\nl7nahHk+bCkfX9uEUmUOqC7HBKuGVGvZJwzbkHK1KXN9uFI+trYHpcw8GBbnEpdXzvOJ9kNxJXsF\niT8DXgA8nrTiWuR5wJtiBzHhcbEDqOlo4F9jB1HTEcDFhC/OVE9qebsReCDhUkf3nfOaw4Hze4so\nnhj5fQhwQQfbta0OV6xj21WuNmGeD1vqx9c2oRSZA82lVqv3xTHBqiHVWvYJwzakXG3KXB+u1I+t\n7UGpMg+aSW1M4Fxic6kd0ypynU+0H2qul7xdIc4VJGBqBUfCDiKtDu1A4GOxg6jpE7EDaOAsYK/Y\nQWQsxbzdlXCv4ZOAn855zXtYjvtExcjvU4CDO9iubXW4Yh3brnK1CfN82FI/vrYJpcgcaCbFWr0v\njglWDanWsk8YtiHlalPm+nClfmxtD0qVeVBfymMC5xLrSfmYlpHrfKL9UDNt5O2aPmNTw40tsxcA\nL4sdxIQnAx+cemxf4CWEg74Z2AV4DfC1HuPaSLjM0eVznt8f+E5v0bTrIOAK4KrYgWQsxbz91ejn\nQuBWwF2A70695hYM/z5RsfL7YNrvW22rwxXz2HaRq02Y58OWw/G1TSg15kBzKdbqfXFMEAyp1rJP\nGLYh5WpT5vpw5XBsbQ9KkXnQzDKPCdriXGJ5Q51PtB9qrvW8HeoCiR2B33a4/QOA3wDfL/HaXQiX\n3bzXjOceCfwD8FXg18ANwM0Tz38ZeGvJmB4NnDrx+62BtwDPAq4cPbYfcO7otd8uuV1o9nm+DtiB\ncAmhWfq6HM5hwMmEL7H2JXy2Lwf+r8E2y57Y+sqBNhwOPGMUyy1GP69m/Q7lhYQ8OXWd103rMm+h\nWe5eNPrzvqz9MnSfidj6siiHxu5KuPrPOI9+Pfr9lzX3uV5+12lTsQqcIbbVsZxijtUP55SrTVQZ\nbOWUN2M5xRwj17s+fw+5TeSUW2NDixms1asoU/O19eVW17V6DhwTDKfWslZKJ+YYfX7dfVoDpZEz\nYznFHKu26XJcYHtII7fGcowZHBe0qa9xwdDHBM4lpjOXCGnMJ8bshyCvvqjP+cTe+qIV8r7FxjuB\nOzQPZa63Ey7nsZ5Dga8Q/k2zvGD03Kyfm4FHlIznMOC9U4+dBJww47UvBV5bcrtjdT/PpxAa8jcX\nvOZjdL9Q5z7Ap4Bbjn7fDfg88GPq59oBwLtKvK6vHJi2Y4333Bs4m7WXiX0r4Z5Iiy6Pd2fC/65a\nqbi/rvMWmvcFlxKKxknHEHK7L+vlEMDvEYqs+49+3we4jOrHZGy9/K7bpl4PvHHB888HHlI6ynKG\n2FbHYsVcR6x+OKdcbaJsnoO5XkWdmGPkeh/n76G2iZxya2yIMVurl1em5rs1YYx1u4nH9gO+Bfxu\nhX31UavnwjHBfLnUWtZKyz0uaLJPayDzPJcxAXQ/LrA9xM+tsRxjBscFs6Q+Lkh9TOBc4nDmEiGN\n+cSY/RDk1Rf1OZ/YVt6W6jNWyHuBRNFwG7sveO4OwAfWef/dgXNGcZzP/GR+G3BHQvJtnHj8CKrd\nk+hNhJVD09v+6IzXPh94Q4VtQ73PcxPwGOBY5h/T29BPnp1D6IQm3ZsQ1xk1t7neia3vHJhW50T0\nd4Q4j5147NGjx/5+wfveMXrNSsX9dZ230LwvOBP49NRjryGsiu9a2RzaRChsJ1dV3pFwuaYTa+57\nvfyu06ZiFThDbKuxY64jRj9cd78pFONVlfksYudNjrleJ+YYud71+XuIbSLH3BpyzNbq5ZSt+dr6\ncquPWj0Xjgnmy6XWslZa7nFB3X1aA5nnkM+YALodF9ge0sitHGMGxwWLpD4uSH1M4FziMOYSIZ35\nxFjn8Bz7oj7nE9vKWxdILLAL8H7g9AWveT3h8ppVYpmXzG+Z8dhuwCcJlyIpYwfgYrYvQJ8x2u8H\nCPdMhXAZpYtYfEnOWQrqH5NbATcCz5zx3PHAE2put4prCSsq9556/BrgJ3Pe0/TENqmg2xyYt88t\nFd/zVODnwMMnHnsSIfbp/zE19jjgiVTv0PrIW2he4LwIuHrqsbMabK+ugvk59KeEy3Tdcs7zszTN\n76ptqssCZxnb6vT7+465jlj9cEq52kSbeQ7mepV9bqn4nhi53uX5exnaREEeuTX9/iHFbK1eTtma\nr40vt/qq1XPhmGC+VGotayXHBW3v0xpoe8ua5wV5jAmgu3GB7WF7todm23BcsHafWyq+p69xQQ5j\nAucShzWXCPHnE2P3Q5BPX9TXfGKbeZvsAomnEDrt8Uqc5zbYVkG9Kx68DHgV4T5Ne8x4zZ7AR2rE\nMi+ZZ3krcEiF1x/J7E54M6uXYrkSOA54H9uvsimjoFmn9kXCKuJpZxAab9e+RrgXz35Tj/+QcCmX\nSX2f2GapmgPz9rml4TYg3PPpRuCgGc/txuqlgaoukOgjb6H55/DQUSzj3NmB+isFmyiYn0OfBv6n\n5Hbayu8qbWpSmwWObXX1/X3HXEesfjiFXG2iizwHc73KPrdUfE/smmOs7fP3kNtEQR65Nf3+IcUc\nu90sim2WWJ9n2ZqvjS+3+qrVc+GYYL7YtZa10tr3Oy5ovs9p1kCrljXPC/IdE0C74wLbwyrbQ7Nt\nOC5Yu88tFd/T17gg5TGBc4nBEOcSIe58Yux+CPLpi2bpYj6xzbxds0Bi4/zX9e79wLOADYQVJLNW\nwnTpRuAUwmVBdgCeNuM1JwJv7jCGIwjH5IIK73kys1cg3UC479t5hHtQvZewqvCihjHWce4olh0n\nHrsF4XO+tof9H064r81lE4/dHrgt8OWJxzYRVlB+l7D6ad6JbT/gwk4irZcDXdmfMMA5AfjqjOdf\nApxac9s55C0T+x2fxO4BfD1SLLNsAB5AuITagwh92BsJBcS9p17bZn6XbVPTrhk9f9SM544i9BVl\n2FbriRlzrH44dq42kUKeg7leVQo1Rxfnb9tEYHvoRgrtpqxYn2eVmq8gxPckwhenxwHvBv6S8L8u\nysilVu+LY4L5YtZaKfQJkEc/O23ZaqW6eQrWQGPmeTWp1DZtjwtsD4HtoTuptJ0ylmFckPKYwLnE\n4c4lQtz5xJz6IUirf+9qPrH3vF0h3i022lDQbLXLOwn3cdow8dhuhHvA1Iml7GqfC6kW987Af7M2\nzkknE/4tjyI01PFKmntW2Ac0/zwPG+1768RjRwNPb7DNpv4GuAm4/4zn9gSuY/a9Wl8JPLjivgq6\ny4FF+6y7nWMIJ+9LCJ3WrPw6ePTcWJUVX33lLbSz8u07rHbczwAe1nB7dRTMzqHbjB7/X9au4N9K\nWL36+zPe03Z+jy1qU5NeDvyC7QucOpcpXva2On5/3zG3pc9+uOx+J7WZq0108VkUmOtl99nGdvrK\n9a7P30NtEwX55VbBsGMGa/VpVWu+3QlfKm0b/XyC8IVOGX3W6jlxTFBe37WWtdLq+x0XtLPPadZA\ny53nRUvb6TPPuxwX2B7Sya2C/GIeb8Nxwdp9VtlOX+OCZRoTFDiXCOnMJUJ684l916oF6fdFk7qs\nO9rO21ZvsXEQ8F+jAMv8/FOJbVbxz3P281PCqrhZz5W5nMlBhA9qckXsC4HH1oixoFwyP5Tyl8Qc\nezzzV9z8BWs74V0JK9puZvbqHeju89xIuD/P5H1n3kVY1RPDXQgFwykLXhPjxFYnBxbtc0vDbewE\nfBb4AnDricc3EnJlp4nHqkywtJ230F3uAnwI+NTo7+9i9mrArhXMzqHbjh6/nu3vMfUDQtE7S5v5\nDeXa1FjbBc6yt9WC/mNuQ9/9cJX9jqVUjLf9WRSY62X3uaXhNmLkelfn76G2iYL8cqtguDGDtfos\nVWu+Jl9udVGr96XL7yccE5QTq9ayVnJc0PY+J1kDLXeeF+Q5JoBuxgW2h3RyqyC/mMfbcFywdp9b\nKry+r3FBF2MC5xLXV+BcIqQ1nxjjHF6Qfl80Sxd1R9t52+oCiVQVND+Yn2f1w91MuEzHvFUq68VS\nJpn/BfjHitv+MOHyntM2EC57Nuu5Z47iuXuF/RQ0/zw/SOgEITSIsyu+v60T6GbgfOANJfbX94mt\nTg50eSKCMODZxtqV4M9i+5VvVSZY+spbaCd3XwxcPfp7lRXxbRZ9BbNzaMfR47Mu8Xs+4TJDm+fE\n1lZ+l21TY20XOMveVruMuauBS4x+uMp+x9rI1bY+w7Y/iwJzvY+YY+U6dHP+btom2uxT7PuHG7O1\n+uzPs0rN13QRQ5+1ek7qjgmgvf6vIN0xAcQdF1grOS4oq2qegjXQsuT5EMcE0P64YKjj5IL8civH\nmMFxQS7jgmUaExQ4l5jaXCI0m0/MeS4R8uiL5tlKu3VH23mb5AKJbSV+qiho3giPJZwsDiBcQvMp\nNbdTsH78OxLunfPqCtv9HebfK3Hv0T5nfQmyAfg529+TapGC5p/nn4xiuh3wQMLqxRjeC/x1ydf2\neWKrkwPr7XNLxfccCNxr6rE9CLHfTFj1tg+z751VtkPrM2+hndx9GCGug4F3NNxWXQXzc+jHhFyd\n9jlW29wsbeV3lTY11nTB1LRla6vT7+875qZi9MNV9zvWdq420eZnUWCul93nlgbv7yvX+zh/jw2x\nTRTkl1sFw4wZrNUXKVPzNf1yq+9aPSeOCdYXu9ayVnJc0PY+J1kDtaMgvzwvyGNMAP2NC2wP7ShY\nvvYw3objgrX73FLxPV2PC1IfEziXOPy5REhjPjHWd9gFefRFXdcdXeTtmgUSG9cJoC8bSvz07aPA\nFcCfA08AzuhwX4cRVvD9pMJ7Hg98ZM5zVwE/Ag6d8dxuhEvC9H1JxfNYXUV1NPCxnvcPocFdQrhf\n3thTF7z+zcAjCSe244H3UP0EW1adHGjTHoRVdRcB+088ftPozw3ADoQvBg8kHL/xz7jjf+Lo98ct\n2E9ueQvhMwF4NvCVCPtfz/nAXjMe30xYNXzVnPe1kd8rVGtTY+cSVlbeDjgC+GLF/U5bprZaR0ox\nrxCnH66637G2c7WJPvMc0sqbslKKeYV+cr2v8/fYsraJlHKrrBxjXsFafZEyNd9ewC2Bb8943dsJ\n9wzfecE+2qzV77bOvnLjmGCxFeLXWtZK60sp5hX67/Or7nOSNVA+Uop5hf7yvM9xge0hHznGDI4L\n1tP1uCD17++dSxz+XCLEn09cId1+COL3RX3UHZ3nbSoLJFJ0I/A24LmES5XctPjljRww+vP6Cu95\nImHF7izbgBMJJ7stE4/vQbjkyvMIJ8s+/RC4mNChHQh8s+f9H0fI91dNPf6ABe/p88RWJwfa9Btg\nE3AZYXXp2Hgl6QWEVVfvA44Ejpn4ec7oNWeMfp/XaUF+eQvh8kKXAU8mFKCp+SBwZ9bed24DoZ2d\nTejLZmma33Xa1FjbBc4ytdU6Uok5Vj+cUq420WeeQzp5U0UqMfeZ632dv8eWtU2kkltV5Baztfr6\nytR8Tb8kaKtWfzBhvPf+BfvKjWOC+VKptayV1pdKzDH6/CZ5CtZAsXOmilRi7jvP+xwX2B7ykWPM\njgvW1/W4IMfv72NzLrF9MecTU++HIH5f1Efd0XneblrvBUvuHcDTaHa7kfFKvF2A6+a8Zu/Rn78p\nuc19CCsCv7fgNWcCVwJvJCTCNsKKndOB/yi5n7adS0jMN/W83wcR7q91HqFBjm1i8Squ8YntVYT/\nKVT3xNZFDrTteuB1hEt0TXZoJwK/ItwnaJ4dp/6cJ9e8BbgQeATwjUj7X5RDZxJOvM8B/nb02LHA\nb4EXLdhmk/yu26bGJgucXWle4CxTW52WS8yx+uHUcrWJtvIc8smbSbnE3Heu93H+njTENpFLbk0a\nWszW6uWUqfkmvyR4FHD56PE9gHez+EuCNmv1HxH+J0uVe5XmwDHB9lKqtayVgtRjjtHnN81TsAYy\nz6uJked9jgtsD2nIMWZwXNCGLscFOX9/H5tzie2LMZ8Yux+CPPqiruuOqHm7QrOGXMd+wAnA04G/\notm9igrauc9NXXsTGtDXWb3v0VXAZ5l9/6FjgJ8Bh5Tc/vMIjawvBe18nlsJn8X9W9hWFVcz/35U\n06vApu0FXEr1y8N2nQPrKah3zI4nrNx6H/BpQidz1zmv3YPw77mC8O+7HvhPwr9llr7zFtrL3ZOB\nz7SwnSqq5NCehH/rWcAHCCvr9md9dfO7SZsaew0hZ15bcd/zLFNbjR1zHTH64ab7HWs7V5to8lnE\nzpuC/HK9oHrMsXL9eLo7f08bQpvIMbeGHLO1enlla74HEf4355mEvuEswlhskS5q9ZWWtxebY4Lt\npVZrWSs5Lmh7n5OsgZoryC/PC/IZE0B/4wLbQ3MFy9EewHHBIgVpjQtifH9fh3OJw59LhDjzibHO\n4bn2RcfTTd3RVd5uo8S/c4X+F0i8buLvGwgde133odr/hsvNF4Db9Li/tj7PHQmXbvLWLt0riHti\nn6XvvIX2cvdI4JUtbEerthJnwVRqCtJrq1prK+ZqGwryy/WC/GLuw1ZsE00V5JdbBfnFnLKC9D7P\nLmr1U1veXmyOCbqxFc8rkGa/oLW2Yq42VZBfnhfkF3MftmJ7aKogv9wqyC/m1BWk9ZnG+P6+DucS\ny8t1LhGcT+xTwXL0RckukLgEuMfE7+/sef+5OAA4J3YQSl5qJ3bzVtMscILU2qq2Z662I8dczzHm\nPtgmmssxt3KMOWWpfZ5d1OoPJtx7VVqP55UgtX5B2zNXm8sxz3OMuQ+2h+ZyzK0cY05dSp9pTt/f\nO5dYTk7HVHEtS1+U7AKJEwn3SzkNeClwUM/7z8XLgeNiByFVZN5KkiRJaWq7Vt/E8K4eIUmSJA1Z\nTt/fO5dYTk7HVBrrMm+TXSBxW8KlcL4LXAk8pOf95+LjwG6xg5AqMm8lSZKkNFmrS5IkScstpzGB\nc4nl5HRMpbEu8zbJBRK7Ax8FdgF2JtzX82ekdc8TSZIkSZIkSZIkSf1zLlFSXWsWSGyKF8caRwKf\nA64b/f4KQmyHAZdHikmSJEmSJEmSJElSfM4lSmrFxgXP/TFw/cTPyR3GcSlw8NRjOwBf6nCfkiRJ\nkiRJkiRJktLnXKKksr7B2nUOa2yY86Y9Rz+TrgauaTW0tf6IsMrrB8Bm4ALg3zvcnyRJkiRJkiRJ\nkqQ8OJcoqYw7ATtNPXY5cGP/oUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmV\n/T+1gh8KW+TpYQAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left [ - \\frac{1}{8} + \\frac{\\sqrt{17}}{8} + \\frac{1}{8} \\sqrt{- 2 \\sqrt{17} + 34} + \\frac{1}{8} \\sqrt{- 16 \\sqrt{2} \\sqrt{\\sqrt{17} + 17} - 2 \\sqrt{2} \\sqrt{- \\sqrt{17} + 17} + 2 \\sqrt{34} \\sqrt{- \\sqrt{17} + 17} + 12 \\sqrt{17} + 68}, \\quad - \\frac{1}{8} \\sqrt{- 16 \\sqrt{2} \\sqrt{\\sqrt{17} + 17} - 2 \\sqrt{2} \\sqrt{- \\sqrt{17} + 17} + 2 \\sqrt{34} \\sqrt{- \\sqrt{17} + 17} + 12 \\sqrt{17} + 68} - \\frac{1}{8} + \\frac{\\sqrt{17}}{8} + \\frac{1}{8} \\sqrt{- 2 \\sqrt{17} + 34}\\right ]$$"
],
"text/plain": [
"⎡ ____________________________________________\n",
"⎢ _____________ ╱ __________ ___________ \n",
"⎢ 1 √17 ╲╱ -2⋅√17 + 34 ╲╱ - 16⋅√2⋅╲╱ √17 + 17 - 2⋅√2⋅╲╱ -√17 + 17 +\n",
"⎢- ─ + ─── + ─────────────── + ───────────────────────────────────────────────\n",
"⎣ 8 8 8 8 \n",
"\n",
"___________________________________ ____________________________________\n",
" ___________ ╱ __________ _____\n",
" 2⋅√34⋅╲╱ -√17 + 17 + 12⋅√17 + 68 ╲╱ - 16⋅√2⋅╲╱ √17 + 17 - 2⋅√2⋅╲╱ -√17\n",
"───────────────────────────────────, - ───────────────────────────────────────\n",
" \n",
"\n",
"___________________________________________ ⎤\n",
"______ ___________ _____________⎥\n",
" + 17 + 2⋅√34⋅╲╱ -√17 + 17 + 12⋅√17 + 68 1 √17 ╲╱ -2⋅√17 + 34 ⎥\n",
"─────────────────────────────────────────── - ─ + ─── + ───────────────⎥\n",
" 8 8 8 8 ⎦"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t4"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a2_1,a2_13=t4"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t5=solve(x**2-a2_1*x+1,x)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAAWCAYAAABkMbthAAAABHNCSVQICAgIfAhkiAAAC+5JREFU\neJztnXuwVlUVwH+XN/IoXvIQ5A35KIGwDIi5TPZSpyGmVCYyesyoY0xlMgmVoQaRJWYPLHp9gJMY\nWpTWlJkZTUZYZmkPtfIRWXHVUkOgAvpj7ePd3/n2OWedw/4u9xvWb+YbPPusu9fea6+9l+fsxwHD\nMAzDMAzDMAxHW0b68cB84Hp3PR34GPAocAgYDiwH/lFB5yTgI8A+4AAwAPgA8PeU3GnA+cBeoL/7\nrQbuS8m9DLjU3R8L7AQuA/5aUI5LgN5IvRJeD3we+LXTux846N3fCawvqTe2nNZ+mvpC9bbNyk/b\nbmuBbwF/QOw8EXgDsBnYlZKdBqyis032uutnC8oYi5j+r7UPlKv3McAO4CUZemP2kzJ6QV+P2HKa\n8o0FViDt2tfJr6W+PcqMC1q9Wv8v4y/DgJ+7sn4yQ28zsTghWJwozs/iRD4WJyxOQNfEiZ7A1cBK\n4LmMcjzPC5zy3t71LmCJJ7MSuB/oU5RZionAE8AiL20JYtBeXtpM4NtAPy9tPfAMMMNLmwXcBrzQ\nXQ8EtgO7gQk55RgP7EGcxef9iAOEfgeB15bUG1tOaz9tfau2bVZ+2naDRvseAD4c0HUi8Bgwx12P\nAh4O6G4WMf2/jH3K1PtU4G7EjiFi9xOtXtDXI7acpnzDgG3AaC9tIvAAMNVL044LWr0E8gn5fxl/\nATgO+BXw6hy9zcLihMUJbX7dPU70LhZpwOKExYlWjhPTgE055XiezyCOkrAacRB/YBkK/Be4UJOh\nxzbgKaCHl9Yfecux1Eu7BjHGm720s1zap7207wBTUjpmOrktOeXY4GRWpdKvA8YhA4RfxrnAtRX0\nxpbT2i9NVn2rtm1Wftp2A3nLsgGp09XAKQE9vZBO+F4vbRzQAbwnp3wxien/Wvto630C4js15C1E\n1kATu59o9WrrEVtOW77lwLJA+krg4961dlzQ6gWd/5fpT0caixMWJ7T5dfc48UXkf6LKYHHC4kSr\nx4lVwFvzBCYBt6fSHgRuCcjeB9xRQnkfpLPsDNx7ALjVuz4PeBp4jZe2GKnwWi/t38hT4rGp/P6J\nvEEJsQg4l7BDfzYgPxD4LjLAltUbU66M/Xzy6lulbfPy07YbwJ0Z+fu8A/gPnW80jgSx/B/09qlS\n7xrZA03sfqLVq61HbDlt+a4DvhlIvxhY511rxwWtXtD5f5n+dKSxOGFxQptfd48TNfLfmIewOGFx\notXjxHDgN8iSI6D+KQfgImR5UcIgZArlsUBmjwMvLaF8KPJkty9w72lk7VvCJmTK7jYvbRYyvXKD\nl/YwMBJZX+mzn3CDDATOIPtp+N2BtKuQNXh7K+iNKVfGfgl59a3StkX207ablsXAH4F/VfjbGMT0\nf9DbJ3a9Y/cTLdp6xJbTci+wEPgaMMSl9UWWCdQ8Oe24EJvY/alZWJywOKHNDyxOFGFxomvktBwt\nceIJZK/JgiQhvR7xDOo3UYx3/z4TyGwPMBgx1H6F8g5kA0S/wL0xwAhXnv8F7k9GpkaXIesoE05D\nOqe/8WoM4uR3BvJZQfYmmhBzkYeoX6TStXpjylWxX159q7RtWftltRvIm64VyFPrQSd7KfImBmQD\n/TzkTdh85Ol4IPJm53JkDV2zien/IUL2aUa9m91PQmjrEVuuDDXgXUhAWYBMJb8O+CDyJiWLrHGh\nDEX+HyKrP52MvNwZhxwscbgBuywWJyxOWJywOFEFixP5dHWc+CmyCTq9kojjgCdTaXOQaYrLAxlt\ndvdG5hQ0zVeQpxT/9KRRSMUP0Ti1tRDZE/EgYqSsU5d81iBPTnNS6TNcHglFU2IAv0Q/1ZilN6Zc\nGfsV1bds25axn6bd/oQ4asIS5LSHUe56uNPxe+ACT64dOYXgpAzdMYnt/wl59qla7xr5U5VpYvWT\nLL3aesSW05YvYRDwPTo3gd1KcZtqxoUivUX+75PnL32QNao9kTW3eQGrWVicsDihzc+nu8aJGuWW\nGFmcsDgRohXjxFnIQ0IDcxGj+ryc7Ibf4u6NyVAUYgRS+PPddS/go8A9Lq9hGX/XB/gRUvAsGZA9\nFM+6PH16ABupP02gyKFfBfwu575Gb2w5rf009S3TtlXsB/nt1jNw/Rydm2pGOh37aJze3EX2WtqY\nxPb/NCH7VK13Df3AH7OfZOnV1iO2nLZ8CZcimxLPBP7sZP8GvDhDXjsuFOkt8v8QIX85Bzjd/fft\ndP3sAVicsDihzy9Ed4sTNco9IFicsDiRplXjxCuQzfYNLEJ2VPtMIrvhb3H3BuUUNMQQ5HzmdYjj\njUemYPaS/+an3enbmnG/L1L+dYF7F+Ktq3IUOfTNyJuYIvL0NkNOYz9Nfcu0bRX7JbST324+j7of\nyEkAh5Bj4tLsQKZr+2bkcwoylXiv8vfVjHya4f9p2qm3T9V619AN/LH7SZZebT1iy2nLB/A+5DSJ\nhAHIiRAHaVzqkKAdF/L0ZuH7fxbt1PvL8UjAnkT4KL2uwOJEMRYn8mmn6+PERsLx4Cnkf+5C90L7\nCSxOWJxI06pxYjoZS+HOBu5KpQ1wmV3bKM4dyO72GPwF+KF3/SIaPxwxGKnwQWRNWZrNwBWB9FHI\ntEuaPIfujezoX51Z4mK9zZbz8e2nra+2bcvYT9tu24GfBPLcRf3mut1ONs2PXZ6jA/diEtv/tfap\nUu8auoEmZj8p0qutR2w5TfnakPY7OXDvAvc3J6TSy4wLWXpB7/9lxsE1wCM0HjzRFVicKMbiRCfd\nPU7UKDeDYHHC4oRPK8eJk/D20vhCHXTu0E7Yg7yJHUcjU5An6sNlBPKVuuRJZ7DTeQ+y2SLhgPu3\njcZpl1XIlOplXtp57t/TEQNu837J0+C57tr/oAzISQ8DyD7aS6O3mXI+aftp66ttW21+ZdptJuE3\nKsOpfzLe4eqXJtnw1RG4F5OY/l/GPs2q9yri9pMitPWILadhBHIM3kOBe19ABsn0Rk/tuFCExv/L\n+Esv4O3Al5GAMPEwy1cWixP55OltppyPxYnmYXFCsDghtHKcGELGEqNpGTeuQI4+8qd1JyNPJxel\nZKeSfd4ryOaI3chAlXAJ8kSUGLkfco7zQ8iRbQmznc67U3kuIfykuyGnHBPIf+J9m7uf94ETrd6Y\nchr7hZhAuL5l2rYovzLtdhPi5D7JB1n8rwQuRtbb+T7Vhhxf9vWc8sUklv+XsU+VetfIfzPUjH5S\npFdbj9hymvK1Iad1zAvcG4T0qfRUtGZcKNILOv8v4y9nIgFhLPL26qpU3tPJHx9iYHEijMWJ1osT\nNcp/B8HihMWJhFaNEwBvRPYvNNCGbLpIb6YZjRjW/8Lap4DfUr9JZT7yVPL9UOaODyHTG8kO7JnI\njuz0Dvk1yCDnd7bNyLTN7JTODuTIJv+3hfzzX6cixsuaAlru7r8z475Wb2w5rf3SZNVX27ba/LTt\ndqpLTzpWG3KW713Ud7YewM+Q4JZwNmKrCTnli0lM/9fap0q9k81wxwTuNaufFOnV1iO2nLZ85yDt\n6P/tYOQt65sC8kXjglav1v+1/nIxncf3LaN+unmBK8fNijIfDhYnGrE40Zpxolbh7yxOWJxIaMU4\n4ee1NquwGxFjpJmBTCNdA3wJ+AaN02nTkUFoPdn0Bz6BbAq9CfgBsms6xFLEeNc7uRuRWQ6fJxHj\nhn5XBvIcjDwdPe5k9iGOtDAltxDp7LMJo9UbW66M/bT11bRtmfyWUtxuAK9EOtgmZFrySsJvt4Yi\nA/ZW5EMlN1A/ldYVxPJ/0NtHU+9jkUBzP53+0oG00Vs8udj9RKtXW4/YcmXKNx/xvxuRdtmKbPAK\nUTQulNGr9f+lFPvLGGR97Trk7ZXPia4Mj2SUOSYWJ6rptTjRveJEjWoPFhYnLE5Aa8aJhO3kjBVz\n0J0iYBiGYbQOq450AQyjRajRdTPUhtFdmIx8uyGXbXT9G1rDMAyjeRzuF08N42hhFrJG2zCOJj6H\n4pjsKciUjOZrlIZhGEb3ZgHhtbKGYRiGMR/ZM6NiHvWfqTYMwzBaj17Y7IFhGIYRpidysEH6WGjD\nMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMIw8/g/RzYPj5k6pxwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left ( 0.932472229404356 - 0.361241666187153 i, \\quad 0.932472229404356 + 0.361241666187153 i\\right )$$"
],
"text/plain": [
"(0.932472229404356 - 0.361241666187153⋅ⅈ, 0.932472229404356 + 0.36124166618715\n",
"3⋅ⅈ)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t5[0].evalf(),t5[1].evalf()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"r16,r1=t5"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def f(n):\n",
" return (E**(I*2*n*pi/17)).evalf()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAAWCAYAAABkMbthAAAABHNCSVQICAgIfAhkiAAAC+5JREFU\neJztnXuwVlUVwH+XN/IoXvIQ5A35KIGwDIi5TPZSpyGmVCYyesyoY0xlMgmVoQaRJWYPLHp9gJMY\nWpTWlJkZTUZYZmkPtfIRWXHVUkOgAvpj7ePd3/n2OWedw/4u9xvWb+YbPPusu9fea6+9l+fsxwHD\nMAzDMAzDMAxHW0b68cB84Hp3PR34GPAocAgYDiwH/lFB5yTgI8A+4AAwAPgA8PeU3GnA+cBeoL/7\nrQbuS8m9DLjU3R8L7AQuA/5aUI5LgN5IvRJeD3we+LXTux846N3fCawvqTe2nNZ+mvpC9bbNyk/b\nbmuBbwF/QOw8EXgDsBnYlZKdBqyis032uutnC8oYi5j+r7UPlKv3McAO4CUZemP2kzJ6QV+P2HKa\n8o0FViDt2tfJr6W+PcqMC1q9Wv8v4y/DgJ+7sn4yQ28zsTghWJwozs/iRD4WJyxOQNfEiZ7A1cBK\n4LmMcjzPC5zy3t71LmCJJ7MSuB/oU5RZionAE8AiL20JYtBeXtpM4NtAPy9tPfAMMMNLmwXcBrzQ\nXQ8EtgO7gQk55RgP7EGcxef9iAOEfgeB15bUG1tOaz9tfau2bVZ+2naDRvseAD4c0HUi8Bgwx12P\nAh4O6G4WMf2/jH3K1PtU4G7EjiFi9xOtXtDXI7acpnzDgG3AaC9tIvAAMNVL044LWr0E8gn5fxl/\nATgO+BXw6hy9zcLihMUJbX7dPU70LhZpwOKExYlWjhPTgE055XiezyCOkrAacRB/YBkK/Be4UJOh\nxzbgKaCHl9Yfecux1Eu7BjHGm720s1zap7207wBTUjpmOrktOeXY4GRWpdKvA8YhA4RfxrnAtRX0\nxpbT2i9NVn2rtm1Wftp2A3nLsgGp09XAKQE9vZBO+F4vbRzQAbwnp3wxien/Wvto630C4js15C1E\n1kATu59o9WrrEVtOW77lwLJA+krg4961dlzQ6gWd/5fpT0caixMWJ7T5dfc48UXkf6LKYHHC4kSr\nx4lVwFvzBCYBt6fSHgRuCcjeB9xRQnkfpLPsDNx7ALjVuz4PeBp4jZe2GKnwWi/t38hT4rGp/P6J\nvEEJsQg4l7BDfzYgPxD4LjLAltUbU66M/Xzy6lulbfPy07YbwJ0Z+fu8A/gPnW80jgSx/B/09qlS\n7xrZA03sfqLVq61HbDlt+a4DvhlIvxhY511rxwWtXtD5f5n+dKSxOGFxQptfd48TNfLfmIewOGFx\notXjxHDgN8iSI6D+KQfgImR5UcIgZArlsUBmjwMvLaF8KPJkty9w72lk7VvCJmTK7jYvbRYyvXKD\nl/YwMBJZX+mzn3CDDATOIPtp+N2BtKuQNXh7K+iNKVfGfgl59a3StkX207ablsXAH4F/VfjbGMT0\nf9DbJ3a9Y/cTLdp6xJbTci+wEPgaMMSl9UWWCdQ8Oe24EJvY/alZWJywOKHNDyxOFGFxomvktBwt\nceIJZK/JgiQhvR7xDOo3UYx3/z4TyGwPMBgx1H6F8g5kA0S/wL0xwAhXnv8F7k9GpkaXIesoE05D\nOqe/8WoM4uR3BvJZQfYmmhBzkYeoX6TStXpjylWxX159q7RtWftltRvIm64VyFPrQSd7KfImBmQD\n/TzkTdh85Ol4IPJm53JkDV2zien/IUL2aUa9m91PQmjrEVuuDDXgXUhAWYBMJb8O+CDyJiWLrHGh\nDEX+HyKrP52MvNwZhxwscbgBuywWJyxOWJywOFEFixP5dHWc+CmyCTq9kojjgCdTaXOQaYrLAxlt\ndvdG5hQ0zVeQpxT/9KRRSMUP0Ti1tRDZE/EgYqSsU5d81iBPTnNS6TNcHglFU2IAv0Q/1ZilN6Zc\nGfsV1bds25axn6bd/oQ4asIS5LSHUe56uNPxe+ACT64dOYXgpAzdMYnt/wl59qla7xr5U5VpYvWT\nLL3aesSW05YvYRDwPTo3gd1KcZtqxoUivUX+75PnL32QNao9kTW3eQGrWVicsDihzc+nu8aJGuWW\nGFmcsDgRohXjxFnIQ0IDcxGj+ryc7Ibf4u6NyVAUYgRS+PPddS/go8A9Lq9hGX/XB/gRUvAsGZA9\nFM+6PH16ABupP02gyKFfBfwu575Gb2w5rf009S3TtlXsB/nt1jNw/Rydm2pGOh37aJze3EX2WtqY\nxPb/NCH7VK13Df3AH7OfZOnV1iO2nLZ8CZcimxLPBP7sZP8GvDhDXjsuFOkt8v8QIX85Bzjd/fft\ndP3sAVicsDihzy9Ed4sTNco9IFicsDiRplXjxCuQzfYNLEJ2VPtMIrvhb3H3BuUUNMQQ5HzmdYjj\njUemYPaS/+an3enbmnG/L1L+dYF7F+Ktq3IUOfTNyJuYIvL0NkNOYz9Nfcu0bRX7JbST324+j7of\nyEkAh5Bj4tLsQKZr+2bkcwoylXiv8vfVjHya4f9p2qm3T9V619AN/LH7SZZebT1iy2nLB/A+5DSJ\nhAHIiRAHaVzqkKAdF/L0ZuH7fxbt1PvL8UjAnkT4KL2uwOJEMRYn8mmn6+PERsLx4Cnkf+5C90L7\nCSxOWJxI06pxYjoZS+HOBu5KpQ1wmV3bKM4dyO72GPwF+KF3/SIaPxwxGKnwQWRNWZrNwBWB9FHI\ntEuaPIfujezoX51Z4mK9zZbz8e2nra+2bcvYT9tu24GfBPLcRf3mut1ONs2PXZ6jA/diEtv/tfap\nUu8auoEmZj8p0qutR2w5TfnakPY7OXDvAvc3J6TSy4wLWXpB7/9lxsE1wCM0HjzRFVicKMbiRCfd\nPU7UKDeDYHHC4oRPK8eJk/D20vhCHXTu0E7Yg7yJHUcjU5An6sNlBPKVuuRJZ7DTeQ+y2SLhgPu3\njcZpl1XIlOplXtp57t/TEQNu837J0+C57tr/oAzISQ8DyD7aS6O3mXI+aftp66ttW21+ZdptJuE3\nKsOpfzLe4eqXJtnw1RG4F5OY/l/GPs2q9yri9pMitPWILadhBHIM3kOBe19ABsn0Rk/tuFCExv/L\n+Esv4O3Al5GAMPEwy1cWixP55OltppyPxYnmYXFCsDghtHKcGELGEqNpGTeuQI4+8qd1JyNPJxel\nZKeSfd4ryOaI3chAlXAJ8kSUGLkfco7zQ8iRbQmznc67U3kuIfykuyGnHBPIf+J9m7uf94ETrd6Y\nchr7hZhAuL5l2rYovzLtdhPi5D7JB1n8rwQuRtbb+T7Vhhxf9vWc8sUklv+XsU+VetfIfzPUjH5S\npFdbj9hymvK1Iad1zAvcG4T0qfRUtGZcKNILOv8v4y9nIgFhLPL26qpU3tPJHx9iYHEijMWJ1osT\nNcp/B8HihMWJhFaNEwBvRPYvNNCGbLpIb6YZjRjW/8Lap4DfUr9JZT7yVPL9UOaODyHTG8kO7JnI\njuz0Dvk1yCDnd7bNyLTN7JTODuTIJv+3hfzzX6cixsuaAlru7r8z475Wb2w5rf3SZNVX27ba/LTt\ndqpLTzpWG3KW713Ud7YewM+Q4JZwNmKrCTnli0lM/9fap0q9k81wxwTuNaufFOnV1iO2nLZ85yDt\n6P/tYOQt65sC8kXjglav1v+1/nIxncf3LaN+unmBK8fNijIfDhYnGrE40Zpxolbh7yxOWJxIaMU4\n4ee1NquwGxFjpJmBTCNdA3wJ+AaN02nTkUFoPdn0Bz6BbAq9CfgBsms6xFLEeNc7uRuRWQ6fJxHj\nhn5XBvIcjDwdPe5k9iGOtDAltxDp7LMJo9UbW66M/bT11bRtmfyWUtxuAK9EOtgmZFrySsJvt4Yi\nA/ZW5EMlN1A/ldYVxPJ/0NtHU+9jkUBzP53+0oG00Vs8udj9RKtXW4/YcmXKNx/xvxuRdtmKbPAK\nUTQulNGr9f+lFPvLGGR97Trk7ZXPia4Mj2SUOSYWJ6rptTjRveJEjWoPFhYnLE5Aa8aJhO3kjBVz\n0J0iYBiGYbQOq450AQyjRajRdTPUhtFdmIx8uyGXbXT9G1rDMAyjeRzuF08N42hhFrJG2zCOJj6H\n4pjsKciUjOZrlIZhGEb3ZgHhtbKGYRiGMR/ZM6NiHvWfqTYMwzBaj17Y7IFhGIYRpidysEH6WGjD\nMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMIw8/g/RzYPj5k6pxwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left ( 0.932472229404356 - 0.361241666187153 i, \\quad 0.932472229404356 + 0.361241666187153 i\\right )$$"
],
"text/plain": [
"(0.932472229404356 - 0.361241666187153⋅ⅈ, 0.932472229404356 + 0.36124166618715\n",
"3⋅ⅈ)"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f(16),f(1)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEBIAAABACAYAAAC5fuNgAAAABHNCSVQICAgIfAhkiAAAIABJREFU\neJzt3XvQbXdd3/F3DgkhF1KIgECAPAJlkEvCNTJE8agIoZTLUJlycZi0QKEUCopYaBnmWLFCUVGx\nIBrbpVwSBqohFJQylqJiU0zQRKBCUSilgYKA3ExIgdM/1t6z99nZz95r/X5rrd9lvV8zz5xkP8/e\n+3vW+vwu37WfrIAkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nScrPSakLkCRJkiRJKsyrgJ9IXYQkSZIkSZIkSZIkSZIkSZIkqQhJ/pv+k1O8qSRJkiRJUsHujjdn\nlCRJkiRJkiRJkiRJkiRJkiRl7EjqAiRJkiRJkgpzPHUBkiRJkiRJkiRJkiRJkiRJkiTt4o0EJEmS\nJEmSujsX+FTqIiRJkiRJkiRJkiRJkiRJkiRJ2sUbCUiSJEmSJHV3HnBt6iIkSZIkSZIkSZIkSZIk\nSZIkSdrFGwlIkiRJkiR1dz5wTeoiJEmSJEmSJEmSJEmSJEmSJEnaxRsJSJIkSZIkdXcv4MOpi5Ak\nSZIkSZIkSZIkSZIkSZIkaRdvJCBJkiRJktTd6cANqYuQJEmSJEmSJEmSJEmSJEmSJGkXbyQgSZIk\nSZLUzenA11MXIUmSJEmSJEmSJEmSJEmSJEnSPt5IQJIkSZIkqZv7AB9KXYQkSZIkSZIkSZIkSZIk\nSZIkSfucnLoASZqZc4BPpy5CkiRJCnBS6gIycD5wbeoiJElSb16TkyRJ0i5e91Jq9iySJEnaxZ5F\nubKXkSRJ0i72MpIkaZaeAzwsdRGSJEmSgrwGuHPqIiRJUm9ek5MkSZKUM3sWSZIkSSWyl5EkSZKk\nAhxJXYAkzcwDgatSFyFJkiQpyJ2B/526CEmS1JvX5CRJkiTlzJ5FkiRJUonsZSRJkiSpAN5IQJKm\ndQbwt6mLkCRJkhTkeOoCJElSEK/JSZIkScqZPYskSZKkEtnLSJIkSVIBvJGAJE3nbOALqYuQJEmS\nFORc4FOpi5AkSb15TU6SJElSzuxZJEmSJJXIXkaSJEmSCuGNBCRpOt8DfCB1EZIkSZKCnAdcm7oI\nSZLUm9fkJEmSJOXMnkWSJElSiexlJEmSJKkQ3khAkqbzEODK1EVIkiRJCnI+cE3qIiRJUm9ek5Mk\nSZKUM3sWSZIkSSWyl5EkSZKkQngjAUmazj2Aj6UuQpIkSVKQewMfTl2EJEnqzWtykiRJknJmzyJJ\nkiSpRPYykiRJklQIbyQgSdM4afHn8aRVSJIkSQp1OnB96iIkSVIvXpOTJEmSlDN7FkmSJEklspeR\nJEmSpIJ4IwFJmsY9gY+mLkKSJElSkNOBr6cuQpIk9eY1OUmSJEk5s2eRJEmSVCJ7GUmSJEkqiDcS\nkKRpPAS4MnURkiRJkoLcB/hQ6iIkSVJvXpOTJEmSlDN7FkmSJEklspeRJEmSpIJ4IwHl6rhf1X3N\n3QXAf09dROVeRPqcz+lL4cxqWV8al+OhrC9pzs4Hrk1dhIrkWudaVQqzWtaXuvOaXDjnBcd1amaw\nrC+FMedlfUnSGOxZwrmOuhamZgbL+lIYc17Wl5Qj55GyvvqwlwnnuMg723NgBsv6UhhzXtaXpHDO\nd2V9JXVy6gKkQ7wDeBwZDBJpIGcDX0pdROW+j/YGOc4byp1ZlVYcD5JKcR7w7tRFqEiudSqFWVWt\nvCYXznlBqZlBzYE5lyTZs4RzHVVqZlBzYM4lxXIeqZe9TDjHhVIzg5oDcy5pLpzv1NmR1AVIW9wJ\nuA4nMdXjTOBrqYuonPOGSmFWpRXHg6SS3AX4VOoiVBzXOpXCrKpWXpML57yg1Myg5sCcS5LsWcK5\njio1M6g5MOeSYjmP1MteJpzjQqmZQc2BOZc0F8536sUbCShHjwWuSF2ENKAHA1elLqJyzhsqhVmV\nVhwPkkrihTaFcK1TKcyqauU1uXDOC0rNDGoOzLkkyZ4lnOuoUjODmgNzLimW80i97GXCOS6UmhnU\nHJhzSXPhfCepeG8DTk1dhDSglwD3T11E5Zw3VAqzKq04HiSV4lzgl1MXoSK51qkUZlW18ppcOOcF\npWYGNQfmXJJkzxLOdVSpmUHNgTmXFMt5pF72MuEcF0rNDGoOzLmkuXC+Uy9HUhcgbTgL+MbiS6rF\nfYFrUxdRMecNlcKsSiuOB0k5OQO4aMf3z8f9vPpzrVMpzKpq5jW5MM4LSs0Mag7MuSQJ7FlCuY4q\nNTOoOTDnkmI5j9TNXiaM40KpmUHNgTmXNBfOd+rNGwkoN38P+N3URUgDuxnwrdRFVMx5Q6Uwq9KK\n40FSTp4NfP+O758HXDNRLaqHa51KYVZVM6/JhXFeUGpmUHNgziVJYM8SynVUqZlBzYE5lxTLeaRu\n9jJhHBdKzQxqDsy5pLlwvpNUvDcAt05dhDSgA+CVqYuonPOGSmFWpRXHg6Rc3AL4DPD2HT9zGXDa\nNOWoIq51KoVZVa0O8JpcKOcFpWYGNQfmXJJ0gD1LKNdRpWYGNQfmXFIs55F6HWAvE8pxodTMoObA\nnEuaC+c79XYkdQGZexBwfMKvubs5cAbwpdSFBDArOsxDgCtTFzGRocZBH2PNG47putWU1VjmvF45\nz2O5joecj5mmYQbm6UnAHwH33vEzpwPXT1OORlDb3s95ql61ZTWGa3K9psx5DdfkapsXHgScPcLr\najy1ZTCG+S1PzvsJc64Uch4TiuO57S6341RDzwJ1raOuheWxZ1kxv2XKbW1aMudKwX1tXXKeR8xZ\nvBp6mdr2ka6R5aktgzHMb3lyXk/NuVLIeUwoTs7nNuf5LtdjJu31Ltr/O6Gm8QjgeamLCGRWdJhX\nA3dMXcREUoyDseYNx3TdaspqLLNer5zPreNBuTID83My7Xz0POBbbD//pwOXTlmUBlfb3s+5ql61\nZTWGOa/XlOe2hmtytc0LflhYntoyGONdmOHS5LyfMOfmPIWcx4TieG67y+1Y1dCzwPTHdezrbq6F\nZbFnWTG/ZcptbVoy5+Y8hVzHg8LkPI+Ys3g19DK17SNdH8tTWwZjuMcrT87rqTk35ynkPCYUJ+dz\nm/N8l+sxE3AkdQEZuwh4H3BD6kJm5HHAFamLCGBW5u2OwF12fP8c4LqJakkp1TgYY95wTNetpqzG\nMuv1yv3cOh6UIzMwT98ELgE+Qnt95J5bfuY+wIemLEqDqm3v51xVr9qyGsOc12voc1v7Nbna5oWL\ngBcDJ030pXi1ZTDG8lhMlV8zHC/3/YQ5N+dTy31MKJzntrsUx6r2ngXSHNexr7u5FpbDnmXF/JYp\n53XcnJvzqeU8HhQm53nEnO1Xey9T2z7Sz1/KU1sGY7jHK0/u66k5N+dTy31MKFzu5zbn+S7XYybt\ndAVwVuoiZuQk4B2piwhkVubtjcA/POR7pwJvmLCWlFKMg7HmDcd03WrKaiyzXq+cz63jQbkyA/N2\ne9q78T51y/eeCTxm2nI0oNr2fs5V9aotqzHMeb2GPre1X5OrbV5wbJentgzGML/lyfmcmXOl4Pmt\nl+e2uxTHqvaeBaY/rvYsWmfPsmJ+y5TreTPnSsHzWxfnkfLV3svUto802+WpLYMxzG95cj5n5lwp\neH7rlfO5db5TsCMjvvYtgbex+650uboQuBb4SupCZuRBwFWpiwhgVubtQuCxwAMP+f79gT+drpxk\nUo2DMeYNx3TdaspqLLNer9zPreNBOTID+izwReBeW753HnDNtOVoILXt/Zyr6lVbVmOY83oNfW5r\nvyZX27zg2C5PbRmMYX7Lk/s5M+eamue3Xp7b7lIcq9p7FkhzXO1ZtGTPsmJ+y5TzeTPnmprntz7O\nI2WrvZepbR9ptstTWwZjmN/y5H7OzLmm5vmtV+7n1vlO2XkGcIz2/+h3kLSSMG8Fbpu6iDVPSF3A\nBF4O3C91EQFyy0qJSs33EeDFwGXA7x/yMy8AHjpZRemkGgdjzBuO6brVlNVYZr1euZ9bx4NyZAbi\nlbqnX/eHwOVbHn/71IVoMLXt/Zyr6lVbVmOY83oNeW7ncE2utnnBsV2e2jIYw/yWJ/dzZs41Nc9v\nvTy33U19rObQs0CaDNqzaMmeZcX8linn82bONTXPb32cR8o1h16mtn2k2S5PbRmMYX7Lk/s5M+ea\nmue3XrmfW+e7uo36+/hHRnrdS2hvJFCi84HrgM+nLmThnsDTUhcxgfsBf5a6iJ5yy0qJSs73acBv\nAVfT3mVzmwcAH5ysojRSjoOh5w3HdN1qymoss16vEs6t40G5MQPxSt7Tr/sIcK/URWgwte39nKvq\nVVtWY5jzeg19bmu/JlfbvODYLk9tGYxhfstTwjkz55qS57dentvuUhyr2nsWSJdBexaBPcs681um\n3M+bOdeUPL91ch4pV+29TG37SLNdntoyGMP8lqeEc2bONSXPb71KOLfOd/Ua/ffxTx7zxQv1QuCl\nHX7udOBK4Lwt33sU8KvANcD1wDeAb699/wPAazvW8xTg0oAalu5Be1OHZR3XL/79qx3ffwhHgLsA\nnzzk+3cD/nLkGi6gvVPiacCdaM/By4D/E/GaXbMC0+VlCA8BnrWo5bTF188Af77neT8BnAL8bI/3\nKjnfX198XQ3cGrgr8FcbP3MacMMEtSylOGb7xkHo2Esxb9Q6ppdKqjnFnF1SVmPlttcZUkk1p8j5\n2Gu84yGPbC3VVjO4p++ry77vTsBLgOPAqbR/x1ewf15YV/Keft2HgafTHodvLB47F/jUxHXA/uPW\nZz7P4fjm2KdA2JySaq1zvcqr5qWQ6yCb7FNWzHkeNafab/V535yuyQ2xl9o01zWsRCWN7T5cm1bM\nb335hXGvj5nz/JSW9RS9MZR1nKb8HHsoqfaMSyWd31o+N8mpZ4E0GbRnyUNJ47+P2vrmGDXnF+ab\nYXuWE5nzvHJuz7JfiT3Lpl211D6PlJS1pSFrzqmX8fOX/WpeI0sci134+cuK+a0vv2Avs6nmnEN5\nWbeX2a/2XqYr57v+ahwPS1PXXPzv4x8HDgZ8vVMGfK1t7g5c0uHnHgz8Ce3fb5sXLr637evbwCN7\n1PRB2kmlbw3Q/t8UPwU8dPHvtwc+QRuCPmKP+88Dv7jj+z8O/GDke+zyAOA/A7da/PuZwB8AnyM8\nn12zAtPmZV3Iebs/cAVwi7XHXgt8hfauNYc5l/YC0rGe75dDviEu47eirfOJG4/fHvjliNfta+pj\nBvvHQczYm3reqHVML6WqOUSKObukrMbKca+zrsSch9ScIudTrPGOh/TZWqqxZvf0/XTZ930HcDlw\nh7XHvgv4KPB3e7xXDXt6gIfT1nr+2mOPBZ4Z+bp97Ttufebzoff/IXLsUyB8Tkmx1rle5dGnbAq9\nDrLOPmXFnOeR81T7rdD3TX1Nbqi91Lq5rmHQfuB17SHfexTwv2j3QG+h/T8iNWtfzwmsby5juw/X\nphXzm9d62kWXczb29bGacw5mvasxr+X0UeMee+rPsTeF1Jxqz7hU0vmt8XOT1D0LpMmgPcu818Gx\n1dY3x6g5v1DWGtZH6rWp5pxDeVkvLef2LPuV2LNs2ldLzfNISVlbGqvm1L2Mn7/sV/NecK69jJ+/\nbGd+u0ndx4C9zCZ7mbyybi+z3xx6mS6c7/qrcTwspag5l9/HD3acYW8k8OvAOQO+3qbXA/fc8f3v\nBt5Ju+BeyeEn4HXAnWkDd2Tt8QuBX+pRzwXAGwJrOJm2aX7B2mN3Bj4PPL9HDRB33J9KW+df7PiZ\ny2nrHcs7aSendfenPXaXBb7mvqzA9HnZFHLeXs1NLwD9/cVjuy4A/driZ471eK9c8g3xc8vHae92\nue7xtPkfW6pjBvvHQejYSzFv1DqmU9ccIsWcXVJWY+W219lUYs5Dak6R87HXeMdDHtmquWb39N11\n3fe9CHjeluf/S+CVHd+rpj39HWlrffLaYy+l/TtOoetx6zqfj7H/7yPnPgXC5pRUa53rVR59yqaQ\n6yCb7FNWzHkeOU+134p535TX5IbYS22a2xq2lOoDw7mM7T5cm1bMbx7raR9dztmY18dqzjmY9T7G\nvJbTR4177Ck/x94mpOZUe8YSz2+Nn5tA2p4F0mTQnmXe6+DYauubY9SYX0if4dR9iz3LiexZ8sm5\nPUs3JfYsfWqpdR4pMWtT1OznL61c95E17gVTj8Wx+fnLivnNYy3pw89f+rOXySfr9jLd1N7LdOV8\n11+N4yFVzTn9Pn6w4wx7I4Em8vVuueN75wBv7lnLYSfgV7Y8dibwLrbfGeIwv0R7B6GQGv4xcCOr\nO5PFaAg77icDj6GdIA/Lwm0Wrz+mr9HeVeN2G49/CfjrQ54zZFZgmrxse8+Dns95GvBl4BFrjz2Z\ntvbNi0JLTwCeRP9FN5d8L9/rIOL5bwHes/HYK4C7RbxmiIZhj1nsOAgZe2PNG3Md05vPn7rmECnm\n7JyyGqu0vc629zyIfH4JNafI+ZhrvOPhphwP4c8/rGb39N113fe9DvidLY//OPALHd+rpj09tHl6\n+dq/X0Z7x9+pNRx+3LrO50Mf3xgNefUp0H9OGXOtc70qo09Z13WPZJ+yYs7LyHmq/VbI+y6lvCYX\nspdyDTtR6g8MG+Yxtte5Nq2Y3/LW0yHm0LGuj9WaczDroe950PM5qXrjpYYyjtOUn2Nv09C/5lR7\nxnUNZZzf2j43WUr9ewQpMmjPsjLHdTBWbX1zjLnnd/kaJaxh63Jdm2rNOZSf9YYycm7P0k2JPUvX\nWmqeR9Y1lJG1zeePUbOfv6zYy/TXkGeux+TnLyvmt7y1xM9f+rOXKSfr9jLd1NzLrHO+62+O42Hz\n+VPVnNPv4wfL5UYCpwNvAv7djp/5eeCBPWs57ARs81rgQT1+/mbAtey+U8iuGt4DfKTH++3SEHce\nbw18E3j2lu9dDPxIxGt38efAN4Dv2nj8s8DXNx4bIyswfl4Oe8+DyNcAeBXt+Tt/y/fOBC5Z/HOf\nDUBO+V6+10HE838S+MLGY2+NeL1QDcMcs6HGQZ+xt2moecMxfeLzp645RIo5O4esxipxr3PYex5E\nPr+EmnPYm8Dwa7zjYcXxEP78w2rOYdzsqm+bVMe0677vWbR/nzfTjl+AU4EPAud1eH5te3qA9wO/\nvfbv74h8vVAN/bK2bT4f+vjGaMirT4Hw/d+Qa53r1er5JfQpS132SPYpK+Z89fwScp5qvxWT9ZTX\n5PrspXI4XiWvYSV+YLhNyjXMtWnF/K6eX8p6Oua1MRj2+ljNOQez3uc9D3o+J1VvvNRQxnHaZozP\nsQ/T0L/mVHvGdQ1lnN8crv/C8JlK/XsEKTJoz9Ka6zoYqra+OYb5PfE1SljDoJy1qeacQ5lZbygj\n5/Ys4XLvWfrWMud5ZJscstYwTs1+/rJiL9NfQ565HkPqXhrqnpsbzG/X9zwIeJ6fv/RnL3Pi80vI\nur1MuJp6Gee7/hwPq+dPUfNkv49/ZP+PBHkq7Z1voL2jxnNHep8uTqa9C91f0d7546wtP3M27cb7\n6pFquJD2WF/V4zk/CPwh7QTQ10nA9wKfBx5G+39U/EXgcuD+Aa8X60vAB4CLtnzvIuD3Rn7/hwDn\nAp9Ye+yOwHcu6lrKISsQlpex3I12sXkecM2W778E+NmA160p39DmYZkNaCfxbyWqZZs+x2zIcdB1\n7G0zxLzhmA6XsuYUc3bqrMbKIevmvJ8c9iZjrPGOh5bjYRw5jJs+Uh3TPvu+hra+J9NeQPhR4DeA\nf0V7QWKf2vb0AB8G7rX459PZ/2FcDrbN57ke302p+hQI3/8NtdblMFeVMPdvyqHmfXsk+5QVcx5m\njn1KTNZTXpNr6LaXyuV4lbyGbft86d8CLwOuH+g9xpZybLs2rZjfMLXkd5uhr4/NNedg1mOk7I1D\n5LTHHutz7CE1pNkzhppjP7JujEyl/j2ChukzaM/Sch3srra+OYb5DVdThtfZswynhqzbs3RjzxKm\nay1znkc25ZS1rvrU7OcvLXuZ/NWyD/Tzl/7Mbxw/f+nPXiacvUw3Oe0va+plnO/6czyEiam5xt/H\nH0RD+J0gzgb+Fnj+lu/9FPADAbV0vavE1fSv+z/QhiikhtssHv8fnHgXkqPAV4F796ylIf6ONC8D\nvgKcsvbYaaT5v7YD/BvaixoP3fK9obMC4+flsPcMfZ3HA68BPka7cJ205Wfut/jeUp87CeWU7+V7\nHQQ8b+nWi5qWd/c5H3hpxOuFahjumI0xDmD32Ns01LzhmF49f+qahzL1nL3vPTflssaVttc57D1j\nXqehvJqXpsr52Gu84yGfbDXUXTO4p9+m777vlrQXlo4vvv4T7YdQXdS2pwd4Ae2FmJsDF5BmTw/d\nsrZrPh/j+MZoyL9Pge77vyHXOtersvqUPnsk+5QVc15Wzjel6Mf3ve+61Nfk+uylcjhetaxhFwK/\n2vP1D3vPg8jnlzS2XZtWzG956+nQ52zM62O15hzMep/37PM6OfTGDfkfp3VjX+M+TENYzan3jA1l\nnd91NXxukrpngfQZBHuWUA3lrYMxauubY5jf1WuUtIaVsjbVmnMoM+sN+efcnqW/0nqWvrU4j7Ry\nyNry+WPUnLqXyaGPAXuZUA155nosqXtpqHdubjC/Xd8z9HX8/KW/1HsQs96dvUx/Nfcyznf9zX08\nLJ8/Rc25/T5+NhriTuCvAx/lxAF6JvDOwFq6hOGHaO+I18ctgD9j+0TSpYbvXDx+A+1kse7TtA11\nHw3xA/CCRU1H1x57HPBPIl83xF1pB8PLd/zMkFmBcfOy6z0PIl/j5sB7gfcD37H2+BHgNxffX+q6\nqOWW7+V7HQQ8b91fsrpT0LOAh0e+XoiGYY/Z0OOgy9hbN+S84ZhOU/MQUszZKbMaq5S9zq73PIh8\nfmk1Q5qcj7HGg+Mhp2w11FszuKc/TN9934tpj9Ojae8eeRz4DHDfPe9T657+h2nrui/wTOCxka8X\nqqH7WNg2n49xfGM05N2nQL/939BrnetVGX1KyB7JPmXFnJeR800p9ltd33ddymtyffdSqY9XDWsY\nlPeBYU5j27VpxfyWt56OMYeOcX2s1pyDWe/zngc9fj6H3rgh/+O0zVjXuA/TEFZz6j1jQ5nnt6bP\nTVL/HkHqDNqzhGsiX6fBngXSZjDG3PO7fI3S1rAS1qZacw5lZr0h/5zbs4QroWcJqcV5JK+sNYxX\ns5+/2MuEaiJfp8Fexs9fWg3mt+t7HkQ8389f+rOXKSPr9jLhau1lnO/6m/t4aBi/5kl/H//ktX8+\nf/Gi+9546U+Bf9TxZ/v6zUU9m+5COyBu3PK9p9Muirv8CvAM4JG0d6qD9m4Lrw8rs5PnAFf2fM6j\ngd+l+2Zg0xcXf34cuH7je5+m/Y8jTgW+sfG9sY47wFXAF4CLgP+6eOwxdL9D4VD5PBV4M+1ktuu9\nU2QFwvIy5nm7kfZOMe+lvXPVExePP4v2fGx77X1S5RvGPVZXAw9c/PODgUs7PAemmXtDj9mQ46Dr\n2FsXO2+sc0x3F1LzWDlOMWenyOqQx6+UvU6JOR+r5lR7kzHWeHA85JStrkqs2T19a9sx7bPv+zHg\n+2j359CO2ZfT3j3yjYfUs1Trnn55IefewHnAz3V4zlKqayrb5vPQ4zv13yGHPgX67/+G7FPA9aqr\n1H1KyB7JPmXFnHeTOufrUu23QrIeek0O4o5fyF4q9fGqYQ37IdoPvj7Z4zmO7RXXphXz201O6+kY\n52yM62NDzLVDZT3VdRGzPt61nHXusce7xj1kzTnsGbvK6fzW9rlJqp4F0mfQnqWbEtfBEnoWSJPB\nkvdyJeYX8lrDSlib5p5zKDPr9izd5DQfQBk9S0gtziP5Za2LkJr9/MVeZp8Sc11CL+PnL/3NJb+l\n9DFgLzMWs24vs85eJu3v8i3lON+Vvq7nNh66CKl5KeXv42evIf7OKH/A6s4XpwLvpvvg2Kxl30k6\nBfga8DM9X/ttwH0ia/gc7d910/sWz7lDj3oahrlr0aW0d8mA9u4qVwzwmn29AfjXHX92qKzAuHnZ\n9Z4HPZ9zT9r/YGbdWbS1f5v2zjG3B16z5bld746TW76X73XQ8zmb/gXtYg3w1sjXCtUw/DEbahz0\nGXvrhpw35jimN58/dc2xUszZOWQ1Vgl7nV3veRD5/NJqnirnU6zxS46HYTTMbzw0dGuE3dPv1mXf\ndxLwJbbvy5+9+Lnv3vEete7pAf6GNl8p566Gw49bl/kchj++MRry7VMgbP839FrnerVb6j4lZo9k\nn7JizndLnfNNqfZbIVlPcU0uZi+V+niVvIYB/Efg3we8/mHveRD5/NLGNrg2rTO/u+W2nkL8OZvq\n+liNOQez3uc9D3o+J3Vv3FDGcZryGvc2Df1qzmXP2FDG+V1X2+cmqX6PIIcM2rPEaShvHRxCbX1z\njDnnd/kapa1hUMbaVGPOocysN5SRc3uWbkrrWWJqmfM8kkPWNp8/Vs1+/tKPvcyJ73kQ+fw59zJ+\n/rLSYH67vudB5Gv4+Ut/9jJlZN1epps59TLOd/3NbTxsPn/smif9ffwjPYvb5njk19ReAzwKuDtw\nMfBbI9ZxAXAG8Nc9nvN3aO948aHI974SuO2Wx5d3kfh85OuH+D3aO3zcAbgQ+OOJ3/8Y8DHgZWuP\nPW3Hz0+ZFQjLy5DOor2TzAeBu609/q3FnycBNwMeTrv4Xb72tVwUnrT49ycc8h415/tq4GzgfrQX\nsnITesyGGAfH6Df21g05b8xtTIfIqeZjTD9n933PdanXuHW573VSy6nmY0yT8ynW+HWOh3KUWPMx\n3NPv02Xfd1vgVsD/3PJzrwe+AtzikNeveU8P8BHg3onee5+u8znke3w3pexTIHz/N/Ra53q1W+qa\nY/ZI9ikr5ny3nGo+Rpr9Vt/3XUpxTS5mL5X6eJW8hp1Ce5fzz4z0+mPIaWwvuTatmN/dasvvlNfH\n5ppzMOuhUvfGXaQ+TlNf4x5CDnvGrlKf33XHqO9zk1S/R5A6g8ewZyk4uvRmAAAJD0lEQVRBTuN/\nqba+OYb53a+mDNuz2LMcJoec27PsV2LPElPLnOeR1FkLEVqzn7+s2MvkJ8ex6OcvK+Z3t9ryay9j\nL3OYHLJuL7Pf3HoZ57v+5jQeQsTUPPnv458c+UYQftecVH4HuA7457R3pbtoxPe6++LPG3o85x8A\nvz3Ae18K/AZwGnD94rGTaCejK4BvDvAefb2bdrK4iPY/zLhkwvf+UdobZxzbePx7aSexbabMCoTl\nZUg30s4Jn+DEiz7LuzdeBXwZeOPia93B4nmXsfsOOTXn+4OLP58D/EmC998n9JjFjoOQsbduyHlj\nbmM6RC41p5izc8pqrNz3OqnlUvOUOZ9ijV/neChHaTW7p++my77v88D/BR4M/NHG888Evkr7H9Rv\nU/OeHuDDwI8Ab0r0/rt0nc8h3+O7KVWfAnH7v6HXOter3VLXHLNHsk9ZMee75VJzqv1WTNZTXJOL\n2UulPl4lr2ElfmCYy9he59q0Yn53qy2/U14fm2vOwayHStkbd5X6OE19jXsIqfeMfaQ+v0u1fm6S\n6vcIUmbQnqUcuYz/dbX1zTHM7341ZdiexZ7lMDnk3J5lvxJ7lpha5jyPpM5aiNCa/fxlxV4mPzmO\nRT9/WTG/u9WWX3sZe5nD5JB1e5n95tbLON/1N6fxECKm5sl/H3+IGwmU5pvA64Cfpm1uv7X7xw+1\nvKPd6cDfHvIzt1v8eWOP130S8MwBangL7SD9Z8DPLR57IvD/gJ/sUc+QPgtcSztpnAH8xUTv+zDg\n1bQT6fpkfDK774IyVFZgvLwM6QbgVcDnOHFRez7wdeCf7njuKRt/HqbmfH+RdmF/Cu0dd1IY45jF\njIPQsbduyHljbmN6Uyk1p5izc8tqrNz3OmMqpeapcz7FGr/O8ZCH2mp2T99dl33fcdo54PXAo4FP\nLh4/i/Ziwgto70K4Tc17emg/dL4V7TyWymHHrc98ntPxza1Pgfj939BrnetVWTVD9z2SfcqKOc+/\n5lT7rdisp7gmF7OXSn28cl3DusjtA8NSxvYm16YV8zuv/E55fWyuOQezHipVb7xUwnGa+hr3EFLu\nGdeVcH6h7s9NUv0eQaoM2rO4DsaqrW+OMef8wvwybM9iz5Jzzu1Z9iuxZ9mmay21ziMlZG3TmDX7\n+UvLXmZ6JY5F8POXdeZ3Xvm1l7GXyTnr9jL7za2Xcb7rb07jYdPYNRf9+/i3BN4G3GXL954GvBR4\nBvDCiPdoaO/CEeu2wMdZHcSubke7Qf8Q7ab8OO3d794LPHXLzz8e+BvgQR1f//bA+was4WzaY/ZW\n4M20d5i4W8da1jUMc9wBXkE7eb5yoNfr4gusjtXm10/veW5oVmD8vOzTEHbeLqa9y80bgffQTij3\nOORnz6L9+1xH+/e7AfhvtH+XTbnmG4bL+FuBr9DeEXAqUxyz0HEQM/bWDTlvzG1Mp645RIo5O8es\nxsp1r7NPQ3k5b+hfc6q9ycWMs8Zv43iI1zCP8dC1Zvf0/XTd9z0MuJx2Prhs8fNHd7zuHPb0j6Ct\n+XsGeK0++hy3i+k2nw95fPvKuU+BYfZ/Q691rld59ylLIXsk+5QVc553zlPtt4bIeoprctB/L7WU\n+njlsoatu4z273D6jp950eJnnh7xPusa5jG2t3FtWjG/ea+n28Ses4uZ5vpYbTkHs95Vw7jXcjbN\naY8N017j3tQQVnOKPWOJ57f2z01S9SwwfQbtWea9Dg6ltr45xpzyC+kz3JC+b7kYe5ZQpWS91Jzb\ns3RzMeX1LKG11DKPlJi1KWv28xd7mRANeed6TH7+smJ+815LtvHzl/7sZcrIur1MNxczn17G+a6/\nOY2HqWrO+ffx93oGcGxR0MHG9y6mDS+L790I3CbwfZotr1+TF9DenSM3DcMd96O0OXnoQK+nwzXk\nNV5yzTcMd6xeDPz+AK+jEx3FeQPyG9O6qaOY1VgN5eW8obyap3AUx0OshvKy1VBezblryOuYzmFP\nfyfaO2aeMcBrqW5Hca2D/OYp3dRRzGqsBnOeO6/J9XOUPOaFEj8w1DCOkkcGY5jf/hrKqznGUcrP\nOZj1EA3l1ZxCQ3nHqaG8mlNp8Fhtsmfp5yh5rKOug/N1lDwyGMP8hmkos+4QRyk/52DWQzSUV3MK\nDeUdp4Zpaz5KHfNIag15Z81epp+j5DEuXB/n6yh5ZDCG+e2vobyaYxyl/JyDWQ/RUF7NKTSUd5wa\nyqt5CkepY75LqSHfbOX8+/idbd5I4Oa0i9m5a4/dNeL1HwCcEvH83L2f8JssjGnI434K8BHS3Gl9\nbnIbL7nmG4Y7Vj8M/NQAr6MTOW+0chvTuimzGq/EnJdY8xQcD/FKzFaJNecut2M6hz09wB8P9Dqq\nm2tdK7d5SjdlVuOZ8/x5Ta4f54WWYzsdMxivxPyWWHMMcz6MEnNTYs0plHicSqw5FY/VTdmz9OM6\n2nIspWMG45Wa31LrDmHOh1FiZkqsOYUSj9PUNTuPDCP3rNnL9OO4aOWe65qZwXgl5rfEmmOY82GU\nmJsSa06hxONUYs1TcL6Ll3O2cv59/M42byTw/YvHHkZ7V5xfAB4xfVlFuDvwztRFSCMx35IkSVLZ\n3NNLkiRJkiRJkiRJkiRJkiRJktRfst/HP3nk1z9n8edx4E3A24FPA/dZ/KmVpwCXpi5CGon5liRJ\nksrmnl6SJEmSJEmSJEmSJEmSJEmSpP6q+X3848DB2r8/evHYaWuPfQZ49oQ1leIdwJmpi5BGYr4l\nSZKksrmnlyRJkiRJkiRJkiRJkiRJkiSpv2p+H3/zRgLnAN/mxL/cdcBzJ6xJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiQF2ryRAMB/AR65+OfbAl+mvcGAJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnK1FOB\n19HeSOAy4Llr37szcAnwY8CvAT8weXWSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJK35/zkp+7/3bus5AAAAAElFTkSuQmCC\n",
"text/latex": [
"$$- \\frac{1}{16} + \\frac{\\sqrt{17}}{16} + \\frac{1}{16} \\sqrt{- 2 \\sqrt{17} + 34} + \\frac{1}{16} \\sqrt{- 16 \\sqrt{2} \\sqrt{\\sqrt{17} + 17} - 2 \\sqrt{2} \\sqrt{- \\sqrt{17} + 17} + 2 \\sqrt{34} \\sqrt{- \\sqrt{17} + 17} + 12 \\sqrt{17} + 68} + \\frac{1}{16} \\sqrt{-136 - 16 \\sqrt{2} \\sqrt{\\sqrt{17} + 17} - 4 \\sqrt{2} \\sqrt{- \\sqrt{17} + 17} - 2 \\sqrt{2} \\sqrt{- 8 \\sqrt{2} \\sqrt{\\sqrt{17} + 17} - \\sqrt{2} \\sqrt{- \\sqrt{17} + 17} + \\sqrt{34} \\sqrt{- \\sqrt{17} + 17} + 6 \\sqrt{17} + 34} + 8 \\sqrt{17} + 2 \\sqrt{34} \\sqrt{- 8 \\sqrt{2} \\sqrt{\\sqrt{17} + 17} - \\sqrt{2} \\sqrt{- \\sqrt{17} + 17} + \\sqrt{34} \\sqrt{- \\sqrt{17} + 17} + 6 \\sqrt{17} + 34} + 4 \\sqrt{- \\sqrt{17} + 17} \\sqrt{- 8 \\sqrt{2} \\sqrt{\\sqrt{17} + 17} - \\sqrt{2} \\sqrt{- \\sqrt{17} + 17} + \\sqrt{34} \\sqrt{- \\sqrt{17} + 17} + 6 \\sqrt{17} + 34} + 4 \\sqrt{34} \\sqrt{- \\sqrt{17} + 17}}$$"
],
"text/plain": [
" \n",
" ____________________________________________\n",
" _____________ ╱ __________ ___________ \n",
" 1 √17 ╲╱ -2⋅√17 + 34 ╲╱ - 16⋅√2⋅╲╱ √17 + 17 - 2⋅√2⋅╲╱ -√17 + 17 +\n",
"- ── + ─── + ─────────────── + ───────────────────────────────────────────────\n",
" 16 16 16 16 \n",
"\n",
" ____________________________________\n",
"___________________________________ ╱ \n",
" ___________ ╱ __________ \n",
" 2⋅√34⋅╲╱ -√17 + 17 + 12⋅√17 + 68 ╲╱ -136 - 16⋅√2⋅╲╱ √17 + 17 - 4⋅√2⋅╲╱\n",
"─────────────────────────────────── + ────────────────────────────────────────\n",
" \n",
"\n",
"______________________________________________________________________________\n",
" ________________________________________________________\n",
"___________ ╱ __________ ___________ ________\n",
" -√17 + 17 - 2⋅√2⋅╲╱ - 8⋅√2⋅╲╱ √17 + 17 - √2⋅╲╱ -√17 + 17 + √34⋅╲╱ -√17 + \n",
"──────────────────────────────────────────────────────────────────────────────\n",
" \n",
"\n",
"______________________________________________________________________________\n",
"_________________ _________________________________________\n",
"___ ╱ __________ ___________ \n",
"17 + 6⋅√17 + 34 + 8⋅√17 + 2⋅√34⋅╲╱ - 8⋅√2⋅╲╱ √17 + 17 - √2⋅╲╱ -√17 + 17 +\n",
"──────────────────────────────────────────────────────────────────────────────\n",
" 16 \n",
"\n",
"______________________________________________________________________________\n",
"________________________________ ________________________\n",
" ___________ ___________ ╱ __________ \n",
" √34⋅╲╱ -√17 + 17 + 6⋅√17 + 34 + 4⋅╲╱ -√17 + 17 ⋅╲╱ - 8⋅√2⋅╲╱ √17 + 17 - √\n",
"──────────────────────────────────────────────────────────────────────────────\n",
" \n",
"\n",
"________________________________________________________________________\n",
"_________________________________________________ \n",
" ___________ ___________ ___________ \n",
"2⋅╲╱ -√17 + 17 + √34⋅╲╱ -√17 + 17 + 6⋅√17 + 34 + 4⋅√34⋅╲╱ -√17 + 17 \n",
"────────────────────────────────────────────────────────────────────────\n",
" "
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [conda root]",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
@7shi

This comment has been minimized.

Copy link
Owner Author

7shi commented Jan 14, 2018

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.