Created
June 21, 2024 07:19
-
-
Save BERENZ/b4455270415350053b743b68fd50c082 to your computer and use it in GitHub Desktop.
An example code for the misclassification and misclassGLM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library("misclassGLM") | |
library("data.table") | |
library("simex") | |
## population definition | |
set.seed(2024) | |
N <- 100000 | |
pop_data <- data.table(age = sample(c("Young", "Middle-aged", "Old"), size = N, c(0.40, 0.35, 0.25), replace = T), | |
ethnic = sample(c("Native", "Nonnative"), size = N, prob = c(0.85, 0.15), replace = T)) | |
pop_data[ethnic == "Native" & age == "Young", internet := rbinom(.N, 1, 0.90)] | |
pop_data[ethnic == "Native" & age == "Middle-aged", internet := rbinom(.N, 1, 0.70)] | |
pop_data[ethnic == "Native" & age == "Old", internet := rbinom(.N, 1, 0.50)] | |
pop_data[ethnic == "Nonnative" & age == "Young", internet := rbinom(.N, 1, 0.25)] | |
pop_data[ethnic == "Nonnative" & age == "Middle-aged", internet := rbinom(.N, 1, 0.15)] | |
pop_data[ethnic == "Nonnative" & age == "Old", internet := rbinom(.N, 1, 0.10)] | |
pop_data[age == "Young", NEP := rbinom(.N, 1, 0.05)] | |
pop_data[age == "Middle-aged", NEP := rbinom(.N, 1, 0.40)] | |
pop_data[age == "Old", NEP := rbinom(.N, 1, 0.60)] | |
pop_data[age == "Young" & internet == 1, NIP := rbinom(.N, 1, 0.80)] | |
pop_data[age == "Middle-aged" & internet == 1, NIP := rbinom(.N, 1, 0.40)] | |
pop_data[age == "Old" & internet == 1, NIP := rbinom(.N, 1, 0.20)] | |
pop_data[internet == 0, NIP := rbinom(.N, 1, 0.10)] | |
pop_data[, age := factor(age, levels = c("Young", "Middle-aged", "Old"))] | |
pop_data[, ethnic := factor(ethnic, levels = c("Native", "Nonnative"))] | |
pop_data[, pi_A := exp(-2 + 2*internet) / (1 + exp(-2 + 2*internet))] | |
gamma_ethnic <- matrix(c(0.7, 0.3, 0.05, 0.95), ncol = 2) | |
gamma_age <- matrix(c(0.85, 0.10, 0.05, | |
0.20, 0.70, 0.10, | |
0.05, 0.15, 0.80), ncol = 3) | |
colnames(gamma_age) <- levels(pop_data$age) | |
colnames(gamma_ethnic) <- levels(pop_data$ethnic) | |
dd <- simex::misclass(pop_data[, .(age, ethnic)], | |
list(age = gamma_age, ethnic = gamma_ethnic), | |
k = 1) | |
pop_data[, age_m := dd$age] | |
pop_data[, ethnic_m := dd$ethnic] | |
## estimation of probabilities for age | |
Pmodel <- nnet::multinom(age ~ age_m, data = pop_data) | |
P <- predict(Pmodel, newdata = pop_data, type = "probs") | |
colnames(P) <- c("Young", "Middle-aged", "Old") | |
est <- misclassGLM(Y = pop_data$NEP,, | |
X = as.matrix(as.numeric(pop_data$ethnic == "Native")), | |
setM = matrix(c(0, 1, 2), nrow = 3), | |
P = P) | |
summary(est) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment