Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
import cv2
import numpy as np
image = cv2.imread('images/elephant.jpg')
cv2.imshow('Original Image', image)
cv2.waitKey(0)
# Creating our 3 x 3 kernel
kernel_3x3 = np.ones((3, 3), np.float32) / 9
# We use the cv2.fitler2D to conovlve the kernal with an image
blurred = cv2.filter2D(image, -1, kernel_3x3)
cv2.imshow('3x3 Kernel Blurring', blurred)
cv2.waitKey(0)
# Creating our 7 x 7 kernel
kernel_7x7 = np.ones((7, 7), np.float32) / 49
blurred2 = cv2.filter2D(image, -1, kernel_7x7)
cv2.imshow('7x7 Kernel Blurring', blurred2)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
image = cv2.imread('images/elephant.jpg')
# Averaging done by convolving the image with a normalized box filter.
# This takes the pixels under the box and replaces the central element
# Box size needs to odd and positive
blur = cv2.blur(image, (3,3))
cv2.imshow('Averaging', blur)
cv2.waitKey(0)
# Instead of box filter, gaussian kernel
Gaussian = cv2.GaussianBlur(image, (7,7), 0)
cv2.imshow('Gaussian Blurring', Gaussian)
cv2.waitKey(0)
# Takes median of all the pixels under kernel area and central
# element is replaced with this median value
median = cv2.medianBlur(image, 5)
cv2.imshow('Median Blurring', median)
cv2.waitKey(0)
# Bilateral is very effective in noise removal while keeping edges sharp
bilateral = cv2.bilateralFilter(image, 9, 75, 75)
cv2.imshow('Bilateral Blurring', bilateral)
cv2.waitKey(0)
cv2.destroyAllWindows()
import numpy as np
import cv2
image = cv2.imread('images/elephant.jpg')
# Parameters, after None are - the filter strength 'h' (5-10 is a good range)
# Next is hForColorComponents, set as same value as h again
#
dst = cv2.fastNlMeansDenoisingColored(image, None, 6, 6, 7, 21)
cv2.imshow('Fast Means Denoising', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.