# import important packages from imports import * from logs import log from preprocessing import * # set a logger file logger = log(path="logs/", file="cross_val.logs") #load dataset data = pd.read_csv("data/loans_data.csv") # preprocessing the loan data data = preprocessing(data) # split data into train and test X = data.drop('Loan_Status',axis = 1) y = data.Loan_Status # create a dictionary for classifiers models = { "KNN": KNeighborsClassifier(), "RF": RandomForestClassifier(), "GB": GradientBoostingClassifier(), "DTC": DecisionTreeClassifier(), "BC": BaggingClassifier(), "XGB": XGBClassifier(), "EXT": ExtraTreesClassifier(), "LG": LogisticRegression(), "BBC": BalancedBaggingClassifier(), "EEC": EasyEnsembleClassifier(), } logger.info("Start Cross Validation") for model_name, model in models.items(): logger.info("Train {}".format(model_name)) # cross_val_score for each classifier scores = cross_val_score(model, X, y, cv=10, scoring = 'accuracy') logger.info("The mean score for {}: {:.3f}".format(model_name, scores.mean())) logger.info("-------------------------------") logger.info("Cross Validation Ends")