public
Created

Using CRC32('5a58d67fa172d0e6d21972b8caac5e19' + n) for n = 0 .. 1000000000000

  • Download Gist
gistfile1.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
 
NOTE
 
Most of the tests in DIEHARD return a p-value, which
should be uniform on [0,1) if the input file contains truly
independent random bits. Those p-values are obtained by
p=1-F(X), where F is the assumed distribution of the sample
random variable X---often normal. But that assumed F is often just
an asymptotic approximation, for which the fit will be worst
in the tails. Thus you should not be surprised with occasion-
al p-values near 0 or 1, such as .0012 or .9983. When a bit
stream really FAILS BIG, you will get p`s of 0 or 1 to six
or more places. By all means, do not, as a Statistician
might, think that a p < .025 or p> .975 means that the RNG
has "failed the test at the .05 level". Such p`s happen
among the hundreds that DIEHARD produces, even with good RNGs.
So keep in mind that "p happens"
 
Enter the name of the file to be tested.
This must be a form="unformatted",access="direct" binary
file of about 10-12 million bytes. Enter file name:
 
 
HERE ARE YOUR CHOICES:
 
1 Birthday Spacings
2 Overlapping Permutations
3 Ranks of 31x31 and 32x32 matrices
4 Ranks of 6x8 Matrices
5 Monkey Tests on 20-bit Words
6 Monkey Tests OPSO,OQSO,DNA
7 Count the 1`s in a Stream of Bytes
8 Count the 1`s in Specific Bytes
9 Parking Lot Test
10 Minimum Distance Test
11 Random Spheres Test
12 The Sqeeze Test
13 Overlapping Sums Test
14 Runs Test
15 The Craps Test
16 All of the above
 
To choose any particular tests, enter corresponding numbers.
Enter 16 for all tests. If you want to perform all but a few
tests, enter corresponding numbers preceded by "-" sign.
Tests are executed in the order they are entered.
 
Enter your choices.
Segmentation fault
deebster@bernie:~/code/die.c$ ./diehard
 
NOTE
 
Most of the tests in DIEHARD return a p-value, which
should be uniform on [0,1) if the input file contains truly
independent random bits. Those p-values are obtained by
p=1-F(X), where F is the assumed distribution of the sample
random variable X---often normal. But that assumed F is often just
an asymptotic approximation, for which the fit will be worst
in the tails. Thus you should not be surprised with occasion-
al p-values near 0 or 1, such as .0012 or .9983. When a bit
stream really FAILS BIG, you will get p`s of 0 or 1 to six
or more places. By all means, do not, as a Statistician
might, think that a p < .025 or p> .975 means that the RNG
has "failed the test at the .05 level". Such p`s happen
among the hundreds that DIEHARD produces, even with good RNGs.
So keep in mind that "p happens"
 
Enter the name of the file to be tested.
This must be a form="unformatted",access="direct" binary
file of about 10-12 million bytes. Enter file name:
 
out.bin
 
HERE ARE YOUR CHOICES:
 
1 Birthday Spacings
2 Overlapping Permutations
3 Ranks of 31x31 and 32x32 matrices
4 Ranks of 6x8 Matrices
5 Monkey Tests on 20-bit Words
6 Monkey Tests OPSO,OQSO,DNA
7 Count the 1`s in a Stream of Bytes
8 Count the 1`s in Specific Bytes
9 Parking Lot Test
10 Minimum Distance Test
11 Random Spheres Test
12 The Sqeeze Test
13 Overlapping Sums Test
14 Runs Test
15 The Craps Test
16 All of the above
 
To choose any particular tests, enter corresponding numbers.
Enter 16 for all tests. If you want to perform all but a few
tests, enter corresponding numbers preceded by "-" sign.
Tests are executed in the order they are entered.
 
Enter your choices.
16
 
|-------------------------------------------------------------|
| This is the BIRTHDAY SPACINGS TEST |
|Choose m birthdays in a "year" of n days. List the spacings |
|between the birthdays. Let j be the number of values that |
|occur more than once in that list, then j is asymptotically |
|Poisson distributed with mean m^3/(4n). Experience shows n |
|must be quite large, say n>=2^18, for comparing the results |
|to the Poisson distribution with that mean. This test uses |
|n=2^24 and m=2^10, so that the underlying distribution for j |
|is taken to be Poisson with lambda=2^30/(2^26)=16. A sample |
|of 200 j''s is taken, and a chi-square goodness of fit test |
|provides a p value. The first test uses bits 1-24 (counting |
|from the left) from integers in the specified file. Then the|
|file is closed and reopened, then bits 2-25 of the same inte-|
|gers are used to provide birthdays, and so on to bits 9-32. |
|Each set of bits provides a p-value, and the nine p-values |
|provide a sample for a KSTEST. |
|------------------------------------------------------------ |
 
RESULTS OF BIRTHDAY SPACINGS TEST FOR out.bin
(no_bdays=1024, no_days/yr=2^24, lambda=16.00, sample size=500)
 
Bits used mean chisqr p-value
1 to 24 776.21 21905.9731 0.000000
2 to 25 783.02 21905.9731 0.000000
3 to 26 807.18 21905.9731 0.000000
4 to 27 794.72 21905.9731 0.000000
5 to 28 780.60 21905.9731 0.000000
6 to 29 775.00 21905.9731 0.000000
7 to 30 796.81 21905.9731 0.000000
8 to 31 793.80 21905.9731 0.000000
9 to 32 794.29 21905.9731 0.000000
 
degree of freedoms is: 17
---------------------------------------------------------------
p-value for KStest on those 9 p-values: 0.000000
 
 
|-------------------------------------------------------------|
| THE OVERLAPPING 5-PERMUTATION TEST |
|This is the OPERM5 test. It looks at a sequence of one mill-|
|ion 32-bit random integers. Each set of five consecutive |
|integers can be in one of 120 states, for the 5! possible or-|
|derings of five numbers. Thus the 5th, 6th, 7th,...numbers |
|each provide a state. As many thousands of state transitions |
|are observed, cumulative counts are made of the number of |
|occurences of each state. Then the quadratic form in the |
|weak inverse of the 120x120 covariance matrix yields a test |
|equivalent to the likelihood ratio test that the 120 cell |
|counts came from the specified (asymptotically) normal dis- |
|tribution with the specified 120x120 covariance matrix (with |
|rank 99). This version uses 1,000,000 integers, twice. |
|-------------------------------------------------------------|
 
OPERM5 test for file
(For samples of 1,000,000 consecutive 5-tuples)
 
sample 1
chisquare=1845650.758241 with df=99; p-value= 0.000000
_______________________________________________________________
 
sample 2
chisquare=1850079.660671 with df=99; p-value= 0.000000
_______________________________________________________________
 
 
|-------------------------------------------------------------|
|This is the BINARY RANK TEST for 31x31 matrices. The leftmost|
|31 bits of 31 random integers from the test sequence are used|
|to form a 31x31 binary matrix over the field {0,1}. The rank |
|is determined. That rank can be from 0 to 31, but ranks< 28 |
|are rare, and their counts are pooled with those for rank 28.|
|Ranks are found for 40,000 such random matrices and a chisqu-|
|are test is performed on counts for ranks 31,30,28 and <=28. |
|-------------------------------------------------------------|
Rank test for binary matrices (31x31) from out.bin
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=28 40000 211.4 7488157.097 7488157.097
r=29 0 5134.0 5134.011 7493291.107
r=30 0 23103.0 23103.048 7516394.155
r=31 0 11551.5 11551.524 7527945.678
 
chi-square = 7527945.678 with df = 3; p-value = 0.000
--------------------------------------------------------------
 
|-------------------------------------------------------------|
|This is the BINARY RANK TEST for 32x32 matrices. A random 32x|
|32 binary matrix is formed, each row a 32-bit random integer.|
|The rank is determined. That rank can be from 0 to 32, ranks |
|less than 29 are rare, and their counts are pooled with those|
|for rank 29. Ranks are found for 40,000 such random matrices|
|and a chisquare test is performed on counts for ranks 32,31,|
|30 and <=29. |
|-------------------------------------------------------------|
Rank test for binary matrices (32x32) from out.bin
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=29 40000 211.4 7488157.097 7488157.097
r=30 0 5134.0 5134.011 7493291.107
r=31 0 23103.0 23103.048 7516394.155
r=32 0 11551.5 11551.524 7527945.678
 
chi-square = 7527945.678 with df = 3; p-value = 0.000
--------------------------------------------------------------
 
|-------------------------------------------------------------|
|This is the BINARY RANK TEST for 6x8 matrices. From each of |
|six random 32-bit integers from the generator under test, a |
|specified byte is chosen, and the resulting six bytes form a |
|6x8 binary matrix whose rank is determined. That rank can be|
|from 0 to 6, but ranks 0,1,2,3 are rare; their counts are |
|pooled with those for rank 4. Ranks are found for 100,000 |
|random matrices, and a chi-square test is performed on |
|counts for ranks 6,5 and (0,...,4) (pooled together). |
|-------------------------------------------------------------|
 
Rank test for binary matrices (6x8) from out.bin
 
bits 1 to 8
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6248 944.3 29788.450 29788.450
r=5 93752 21743.9 238465.338 268253.788
r=6 0 77311.8 77311.800 345565.588
 
chi-square = 345565.588 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 2 to 9
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6249 944.3 29799.685 29799.685
r=5 93751 21743.9 238458.715 268258.399
r=6 0 77311.8 77311.800 345570.199
 
chi-square = 345570.199 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 3 to 10
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6237 944.3 29665.015 29665.015
r=5 93763 21743.9 238538.200 268203.215
r=6 0 77311.8 77311.800 345515.015
 
chi-square = 345515.015 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 4 to 11
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6304 944.3 30420.824 30420.824
r=5 93696 21743.9 238094.578 268515.402
r=6 0 77311.8 77311.800 345827.202
 
chi-square = 345827.202 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 5 to 12
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 7785 944.3 49555.413 49555.413
r=5 92215 21743.9 228393.983 277949.396
r=6 0 77311.8 77311.800 355261.196
 
chi-square = 355261.196 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 6 to 13
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 7766 944.3 49280.516 49280.516
r=5 92234 21743.9 228517.156 277797.672
r=6 0 77311.8 77311.800 355109.472
 
chi-square = 355109.472 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 7 to 14
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6292 944.3 30284.756 30284.756
r=5 93708 21743.9 238174.002 268458.759
r=6 0 77311.8 77311.800 345770.559
 
chi-square = 345770.559 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 8 to 15
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6242 944.3 29721.090 29721.090
r=5 93758 21743.9 238505.080 268226.170
r=6 0 77311.8 77311.800 345537.970
 
chi-square = 345537.970 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 9 to 16
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6232 944.3 29608.992 29608.992
r=5 93768 21743.9 238571.323 268180.315
r=6 0 77311.8 77311.800 345492.115
 
chi-square = 345492.115 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 10 to 17
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6243 944.3 29732.311 29732.311
r=5 93757 21743.9 238498.456 268230.767
r=6 0 77311.8 77311.800 345542.567
 
chi-square = 345542.567 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 11 to 18
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6271 944.3 30047.371 30047.371
r=5 93729 21743.9 238313.027 268360.398
r=6 0 77311.8 77311.800 345672.198
 
chi-square = 345672.198 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 12 to 19
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6301 944.3 30386.778 30386.778
r=5 93699 21743.9 238114.433 268501.211
r=6 0 77311.8 77311.800 345813.011
 
chi-square = 345813.011 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 13 to 20
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6234 944.3 29631.395 29631.395
r=5 93766 21743.9 238558.073 268189.468
r=6 0 77311.8 77311.800 345501.268
 
chi-square = 345501.268 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 14 to 21
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6252 944.3 29833.400 29833.400
r=5 93748 21743.9 238438.846 268272.245
r=6 0 77311.8 77311.800 345584.045
 
chi-square = 345584.045 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 15 to 22
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6239 944.3 29687.438 29687.438
r=5 93761 21743.9 238524.951 268212.390
r=6 0 77311.8 77311.800 345524.190
 
chi-square = 345524.190 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 16 to 23
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6259 944.3 29912.142 29912.142
r=5 93741 21743.9 238392.487 268304.630
r=6 0 77311.8 77311.800 345616.430
 
chi-square = 345616.430 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 17 to 24
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6213 944.3 29396.590 29396.590
r=5 93787 21743.9 238697.210 268093.799
r=6 0 77311.8 77311.800 345405.599
 
chi-square = 345405.599 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 18 to 25
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6228 944.3 29564.212 29564.212
r=5 93772 21743.9 238597.822 268162.035
r=6 0 77311.8 77311.800 345473.835
 
chi-square = 345473.835 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 19 to 26
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6229 944.3 29575.404 29575.404
r=5 93771 21743.9 238591.197 268166.601
r=6 0 77311.8 77311.800 345478.401
 
chi-square = 345478.401 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 20 to 27
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6225 944.3 29530.650 29530.650
r=5 93775 21743.9 238617.698 268148.348
r=6 0 77311.8 77311.800 345460.148
 
chi-square = 345460.148 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 21 to 28
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 7756 944.3 49136.140 49136.140
r=5 92244 21743.9 228581.998 277718.138
r=6 0 77311.8 77311.800 355029.938
 
chi-square = 355029.938 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 22 to 29
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 7741 944.3 48919.973 48919.973
r=5 92259 21743.9 228679.277 277599.250
r=6 0 77311.8 77311.800 354911.050
 
chi-square = 354911.050 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 23 to 30
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6277 944.3 30115.100 30115.100
r=5 93723 21743.9 238273.301 268388.402
r=6 0 77311.8 77311.800 345700.202
 
chi-square = 345700.202 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 24 to 31
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6234 944.3 29631.395 29631.395
r=5 93766 21743.9 238558.073 268189.468
r=6 0 77311.8 77311.800 345501.268
 
chi-square = 345501.268 with df = 2; p-value = 0.000
--------------------------------------------------------------
 
bits 25 to 32
 
RANK OBSERVED EXPECTED (O-E)^2/E SUM
 
r<=4 6247 944.3 29777.218 29777.218
r=5 93753 21743.9 238471.961 268249.180
r=6 0 77311.8 77311.800 345560.980
 
chi-square = 345560.980 with df = 2; p-value = 0.000
--------------------------------------------------------------
TEST SUMMARY, 25 tests on 100,000 random 6x8 matrices
These should be 25 uniform [0,1] random variates:
 
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
The KS test for those 25 supposed UNI's yields
KS p-value = 0.000000
 
|-------------------------------------------------------------|
| THE BITSTREAM TEST |
|The file under test is viewed as a stream of bits. Call them |
|b1,b2,... . Consider an alphabet with two "letters", 0 and 1|
|and think of the stream of bits as a succession of 20-letter |
|"words", overlapping. Thus the first word is b1b2...b20, the|
|second is b2b3...b21, and so on. The bitstream test counts |
|the number of missing 20-letter (20-bit) words in a string of|
|2^21 overlapping 20-letter words. There are 2^20 possible 20|
|letter words. For a truly random string of 2^21+19 bits, the|
|number of missing words j should be (very close to) normally |
|distributed with mean 141,909 and sigma 428. Thus |
| (j-141909)/428 should be a standard normal variate (z score)|
|that leads to a uniform [0,1) p value. The test is repeated |
|twenty times. |
|-------------------------------------------------------------|
 
THE OVERLAPPING 20-TUPLES BITSTREAM TEST for out.bin
(20 bits/word, 2097152 words 20 bitstreams. No. missing words
should average 141909.33 with sigma=428.00.)
----------------------------------------------------------------
BITSTREAM test results for out.bin.
 
Bitstream No. missing words z-score p-value
1 257601 270.31 0.000000
2 295921 359.84 0.000000
3 224863 193.82 0.000000
4 237996 224.50 0.000000
5 300889 371.45 0.000000
6 218786 179.62 0.000000
7 218946 179.99 0.000000
8 228877 203.20 0.000000
9 211807 163.31 0.000000
10 242312 234.59 0.000000
11 223517 190.67 0.000000
12 211558 162.73 0.000000
13 254730 263.60 0.000000
14 212331 164.54 0.000000
15 214337 169.22 0.000000
16 253500 260.73 0.000000
17 278531 319.21 0.000000
18 219422 181.10 0.000000
19 218135 178.10 0.000000
20 264951 287.48 0.000000
----------------------------------------------------------------
 
|-------------------------------------------------------------|
| OPSO means Overlapping-Pairs-Sparse-Occupancy |
|The OPSO test considers 2-letter words from an alphabet of |
|1024 letters. Each letter is determined by a specified ten |
|bits from a 32-bit integer in the sequence to be tested. OPSO|
|generates 2^21 (overlapping) 2-letter words (from 2^21+1 |
|"keystrokes") and counts the number of missing words---that |
|is 2-letter words which do not appear in the entire sequence.|
|That count should be very close to normally distributed with |
|mean 141,909, sigma 290. Thus (missingwrds-141909)/290 should|
|be a standard normal variable. The OPSO test takes 32 bits at|
|a time from the test file and uses a designated set of ten |
|consecutive bits. It then restarts the file for the next de- |
|signated 10 bits, and so on. |
|------------------------------------------------------------ |
 
OPSO test for file out.bin
 
Bits used No. missing words z-score p-value
23 to 32 1034780 3078.8644 0.000000
22 to 31 1034639 3078.3782 0.000000
21 to 30 1034944 3079.4299 0.000000
20 to 29 1034474 3077.8092 0.000000
19 to 28 1034500 3077.8989 0.000000
18 to 27 1036398 3084.4437 0.000000
17 to 26 1034777 3078.8540 0.000000
16 to 25 1034818 3078.9954 0.000000
15 to 24 1034689 3078.5506 0.000000
14 to 23 1034607 3078.2678 0.000000
13 to 22 1034537 3078.0264 0.000000
12 to 21 1034503 3077.9092 0.000000
11 to 20 1034610 3078.2782 0.000000
10 to 19 1034492 3077.8713 0.000000
9 to 18 1034477 3077.8196 0.000000
8 to 17 1034523 3077.9782 0.000000
7 to 16 1034780 3078.8644 0.000000
6 to 15 1034639 3078.3782 0.000000
5 to 14 1034944 3079.4299 0.000000
4 to 13 1034474 3077.8092 0.000000
3 to 12 1034500 3077.8989 0.000000
2 to 11 1036398 3084.4437 0.000000
1 to 10 1034777 3078.8540 0.000000
-----------------------------------------------------------------
 
|------------------------------------------------------------ |
| OQSO means Overlapping-Quadruples-Sparse-Occupancy |
| The test OQSO is similar, except that it considers 4-letter|
|words from an alphabet of 32 letters, each letter determined |
|by a designated string of 5 consecutive bits from the test |
|file, elements of which are assumed 32-bit random integers. |
|The mean number of missing words in a sequence of 2^21 four- |
|letter words, (2^21+3 "keystrokes"), is again 141909, with |
|sigma = 295. The mean is based on theory; sigma comes from |
|extensive simulation. |
|------------------------------------------------------------ |
 
OQSO test for file out.bin
 
Bits used No. missing words z-score p-value
28 to 32 1047243 3068.9277 0.000000
27 to 31 1047192 3068.7548 0.000000
26 to 30 1047342 3069.2633 0.000000
25 to 29 1047126 3068.5311 0.000000
24 to 28 1047009 3068.1345 0.000000
23 to 27 1047213 3068.8260 0.000000
22 to 26 1047300 3069.1209 0.000000
21 to 25 1047141 3068.5819 0.000000
20 to 24 1047297 3069.1107 0.000000
19 to 23 1047264 3068.9989 0.000000
18 to 22 1047513 3069.8429 0.000000
17 to 21 1047345 3069.2735 0.000000
16 to 20 1047345 3069.2735 0.000000
15 to 19 1047125 3068.5277 0.000000
14 to 18 1047245 3068.9345 0.000000
13 to 17 1047123 3068.5209 0.000000
12 to 16 1047243 3068.9277 0.000000
11 to 15 1047192 3068.7548 0.000000
10 to 14 1047342 3069.2633 0.000000
9 to 13 1047126 3068.5311 0.000000
8 to 12 1047009 3068.1345 0.000000
7 to 11 1047213 3068.8260 0.000000
6 to 10 1047300 3069.1209 0.000000
5 to 9 1047141 3068.5819 0.000000
4 to 8 1047297 3069.1107 0.000000
3 to 7 1047264 3068.9989 0.000000
2 to 6 1047513 3069.8429 0.000000
1 to 5 1047345 3069.2735 0.000000
-----------------------------------------------------------------
 
|------------------------------------------------------------ |
| The DNA test considers an alphabet of 4 letters: C,G,A,T,|
|determined by two designated bits in the sequence of random |
|integers being tested. It considers 10-letter words, so that|
|as in OPSO and OQSO, there are 2^20 possible words, and the |
|mean number of missing words from a string of 2^21 (over- |
|lapping) 10-letter words (2^21+9 "keystrokes") is 141909. |
|The standard deviation sigma=339 was determined as for OQSO |
|by simulation. (Sigma for OPSO, 290, is the true value (to |
|three places), not determined by simulation. |
|------------------------------------------------------------ |
 
DNA test for file out.bin
 
Bits used No. missing words z-score p-value
31 to 32 1048460 2674.1908 0.000000
30 to 31 1048444 2674.1436 0.000000
29 to 30 1048448 2674.1554 0.000000
28 to 29 1048448 2674.1554 0.000000
27 to 28 1048448 2674.1554 0.000000
26 to 27 1048444 2674.1436 0.000000
25 to 26 1048444 2674.1436 0.000000
24 to 25 1048448 2674.1554 0.000000
23 to 24 1048444 2674.1436 0.000000
22 to 23 1048444 2674.1436 0.000000
21 to 22 1048448 2674.1554 0.000000
20 to 21 1048448 2674.1554 0.000000
19 to 20 1048448 2674.1554 0.000000
18 to 19 1048448 2674.1554 0.000000
17 to 18 1048444 2674.1436 0.000000
16 to 17 1048460 2674.1908 0.000000
15 to 16 1048460 2674.1908 0.000000
14 to 15 1048444 2674.1436 0.000000
13 to 14 1048448 2674.1554 0.000000
12 to 13 1048448 2674.1554 0.000000
11 to 12 1048448 2674.1554 0.000000
10 to 11 1048444 2674.1436 0.000000
9 to 10 1048444 2674.1436 0.000000
8 to 9 1048448 2674.1554 0.000000
7 to 8 1048444 2674.1436 0.000000
6 to 7 1048444 2674.1436 0.000000
5 to 6 1048448 2674.1554 0.000000
4 to 5 1048448 2674.1554 0.000000
3 to 4 1048448 2674.1554 0.000000
2 to 3 1048448 2674.1554 0.000000
1 to 2 1048444 2674.1436 0.000000
-----------------------------------------------------------------
 
|-------------------------------------------------------------|
| This is the COUNT-THE-1''s TEST on a stream of bytes. |
|Consider the file under test as a stream of bytes (four per |
|32 bit integer). Each byte can contain from 0 to 8 1''s, |
|with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let |
|the stream of bytes provide a string of overlapping 5-letter|
|words, each "letter" taking values A,B,C,D,E. The letters are|
|determined by the number of 1''s in a byte: 0,1,or 2 yield A,|
|3 yields B, 4 yields C, 5 yields D and 6,7 or 8 yield E. Thus|
|we have a monkey at a typewriter hitting five keys with vari-|
|ous probabilities (37,56,70,56,37 over 256). There are 5^5 |
|possible 5-letter words, and from a string of 256,000 (over- |
|lapping) 5-letter words, counts are made on the frequencies |
|for each word. The quadratic form in the weak inverse of |
|the covariance matrix of the cell counts provides a chisquare|
|test: Q5-Q4, the difference of the naive Pearson sums of |
|(OBS-EXP)^2/EXP on counts for 5- and 4-letter cell counts. |
|-------------------------------------------------------------|
 
Test result for the byte stream from out.bin
(Degrees of freedom: 5^4-5^3=2500; sample size: 2560000)
 
chisquare z-score p-value
531837.94 7485.969 0.000000
 
|-------------------------------------------------------------|
| This is the COUNT-THE-1''s TEST for specific bytes. |
|Consider the file under test as a stream of 32-bit integers. |
|From each integer, a specific byte is chosen , say the left- |
|most: bits 1 to 8. Each byte can contain from 0 to 8 1''s, |
|with probabilitie 1,8,28,56,70,56,28,8,1 over 256. Now let |
|the specified bytes from successive integers provide a string|
|of (overlapping) 5-letter words, each "letter" taking values |
|A,B,C,D,E. The letters are determined by the number of 1''s,|
|in that byte: 0,1,or 2 ---> A, 3 ---> B, 4 ---> C, 5 ---> D, |
|and 6,7 or 8 ---> E. Thus we have a monkey at a typewriter |
|hitting five keys with with various probabilities: 37,56,70, |
|56,37 over 256. There are 5^5 possible 5-letter words, and |
|from a string of 256,000 (overlapping) 5-letter words, counts|
|are made on the frequencies for each word. The quadratic form|
|in the weak inverse of the covariance matrix of the cell |
|counts provides a chisquare test: Q5-Q4, the difference of |
|the naive Pearson sums of (OBS-EXP)^2/EXP on counts for 5- |
|and 4-letter cell counts. |
|-------------------------------------------------------------|
 
Test results for specific bytes from out.bin
(Degrees of freedom: 5^4-5^3=2500; sample size: 256000)
 
bits used chisquare z-score p-value
1 to 8 443487.89 6236.511 0.000000
2 to 9 585000.75 8237.805 0.000000
3 to 10 463217.32 6515.527 0.000000
4 to 11 544391.37 7663.501 0.000000
5 to 12 472057.35 6640.544 0.000000
6 to 13 478001.49 6724.607 0.000000
7 to 14 446485.58 6278.904 0.000000
8 to 15 450302.02 6332.877 0.000000
9 to 16 444177.82 6246.268 0.000000
10 to 17 625034.82 8803.972 0.000000
11 to 18 941859.02 13284.543 0.000000
12 to 19 998469.58 14085.137 0.000000
13 to 20 714760.26 10072.881 0.000000
14 to 21 564968.26 7954.502 0.000000
15 to 22 1697183.13 23966.439 0.000000
16 to 23 511671.26 7200.769 0.000000
17 to 24 442834.00 6227.263 0.000000
18 to 25 586102.43 8253.385 0.000000
19 to 26 459497.91 6462.926 0.000000
20 to 27 544108.11 7659.495 0.000000
21 to 28 471147.42 6627.675 0.000000
22 to 29 477746.44 6721.000 0.000000
23 to 30 446438.58 6278.240 0.000000
24 to 31 450303.65 6332.900 0.000000
25 to 32 443768.44 6240.478 0.000000
|-------------------------------------------------------------|
| THIS IS A PARKING LOT TEST |
|In a square of side 100, randomly "park" a car---a circle of |
|radius 1. Then try to park a 2nd, a 3rd, and so on, each |
|time parking "by ear". That is, if an attempt to park a car |
|causes a crash with one already parked, try again at a new |
|random location. (To avoid path problems, consider parking |
|helicopters rather than cars.) Each attempt leads to either|
|a crash or a success, the latter followed by an increment to |
|the list of cars already parked. If we plot n: the number of |
|attempts, versus k: the number successfully parked, we get a |
|curve that should be similar to those provided by a perfect |
|random number generator. Theory for the behavior of such a |
|random curve seems beyond reach, and as graphics displays are|
|not available for this battery of tests, a simple characteriz|
|ation of the random experiment is used: k, the number of cars|
|successfully parked after n=12,000 attempts. Simulation shows|
|that k should average 3523 with sigma 21.9 and is very close |
|to normally distributed. Thus (k-3523)/21.9 should be a st- |
|andard normal variable, which, converted to a uniform varia- |
|ble, provides input to a KSTEST based on a sample of 10. |
|-------------------------------------------------------------|
 
CDPARK: result of 10 tests on file out.bin
(Of 12000 tries, the average no. of successes should be
3523.0 with sigma=21.9)
 
No. succeses z-score p-value
427 -141.3699 1.000000
270 -148.5388 1.000000
410 -142.1461 1.000000
276 -148.2648 1.000000
278 -148.1735 1.000000
276 -148.2648 1.000000
272 -148.4475 1.000000
416 -141.8721 1.000000
433 -141.0959 1.000000
436 -140.9589 1.000000
Square side=100, avg. no. parked=349.40 sample std.=75.36
p-value of the KSTEST for those 10 p-values: 0.000000
 
 
|-------------------------------------------------------------|
| THE MINIMUM DISTANCE TEST |
|It does this 100 times: choose n=8000 random points in a |
|square of side 10000. Find d, the minimum distance between |
|the (n^2-n)/2 pairs of points. If the points are truly inde-|
|pendent uniform, then d^2, the square of the minimum distance|
|should be (very close to) exponentially distributed with mean|
|.995 . Thus 1-exp(-d^2/.995) should be uniform on [0,1) and |
|a KSTEST on the resulting 100 values serves as a test of uni-|
|formity for random points in the square. Test numbers=0 mod 5|
|are printed but the KSTEST is based on the full set of 100 |
|random choices of 8000 points in the 10000x10000 square. |
|-------------------------------------------------------------|
 
This is the MINIMUM DISTANCE test for file out.bin
 
Sample no. d^2 mean equiv uni
5 0.4191 704.7770 0.343750
10 0.1862 352.4909 0.170652
15 0.4191 235.1181 0.343750
20 0.4191 176.4108 0.343750
25 0.0000 141.1789 0.000000
30 0.4191 117.6972 0.343750
35 0.1862 100.9019 0.170652
40 0.4191 88.3416 0.343750
45 0.4191 78.5579 0.343750
50 0.0000 70.7273 0.000000
55 0.4191 64.3238 0.343750
60 0.1862 58.9767 0.170652
65 0.4191 54.4722 0.343750
70 0.4191 50.6020 0.343750
75 0.0000 47.2453 0.000000
80 0.4191 44.3105 0.343750
85 0.1862 41.7160 0.170652
90 0.4191 39.4192 0.343750
95 0.4191 37.3597 0.343750
100 0.0000 35.5043 0.000000
--------------------------------------------------------------
Result of KS test on 100 transformed mindist^2's: p-value=0.000000
 
 
|-------------------------------------------------------------|
| THE 3DSPHERES TEST |
|Choose 4000 random points in a cube of edge 1000. At each |
|point, center a sphere large enough to reach the next closest|
|point. Then the volume of the smallest such sphere is (very |
|close to) exponentially distributed with mean 120pi/3. Thus |
|the radius cubed is exponential with mean 30. (The mean is |
|obtained by extensive simulation). The 3DSPHERES test gener-|
|ates 4000 such spheres 20 times. Each min radius cubed leads|
|to a uniform variable by means of 1-exp(-r^3/30.), then a |
| KSTEST is done on the 20 p-values. |
|-------------------------------------------------------------|
 
The 3DSPHERES test for file out.bin
 
sample no r^3 equiv. uni.
1 89.229 0.948917
2 135.744 0.989163
3 93.768 0.956090
4 46.105 0.784939
5 96.727 0.960214
6 127.389 0.985683
7 111.865 0.975979
8 105.081 0.969884
9 62.460 0.875320
10 90.388 0.950853
11 57.682 0.853794
12 54.221 0.835914
13 103.556 0.968313
14 50.021 0.811255
15 110.796 0.975107
16 92.110 0.953594
17 33.500 0.672626
18 71.398 0.907443
19 93.957 0.956365
20 101.907 0.966523
--------------------------------------------------------------
p-value for KS test on those 20 p-values: 0.000000
 
 
|-------------------------------------------------------------|
| This is the SQUEEZE test |
| Random integers are floated to get uniforms on [0,1). Start-|
| ing with k=2^31=2147483647, the test finds j, the number of |
| iterations necessary to reduce k to 1, using the reduction |
| k=ceiling(k*U), with U provided by floating integers from |
| the file being tested. Such j''s are found 100,000 times, |
| then counts for the number of times j was <=6,7,...,47,>=48 |
| are used to provide a chi-square test for cell frequencies. |
|-------------------------------------------------------------|
 
RESULTS OF SQUEEZE TEST FOR out.bin
 
Table of standardized frequency counts
(obs-exp)^2/exp for j=(1,..,6), 7,...,47,(48,...)
-0.1 -1.2 13.5 40.6 38.8 58.0
63.7 54.5 14.5 -5.8 -32.5 -59.8
-65.0 -58.4 22.6 109.9 147.6 -7.1
-42.4 -66.6 -66.3 -61.4 -49.3 -11.1
66.9 67.3 17.0 11.0 -6.2 -18.4
-18.4 -14.8 -11.7 -9.2 -7.2 270.6
149.5 130.6 45.5 27.0 -1.3 -1.0
-1.1
Chi-square with 42 degrees of freedom:203641.581471
z-score=22214.535561, p-value=0.000000
_____________________________________________________________
 
 
|-------------------------------------------------------------|
| The OVERLAPPING SUMS test |
|Integers are floated to get a sequence U(1),U(2),... of uni- |
|form [0,1) variables. Then overlapping sums, |
| S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are formed. |
|The S''s are virtually normal with a certain covariance mat- |
|rix. A linear transformation of the S''s converts them to a |
|sequence of independent standard normals, which are converted|
|to uniform variables for a KSTEST. |
|-------------------------------------------------------------|
 
Results of the OSUM test for out.bin
 
Test no p-value
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000000
8 0.000000
9 0.000000
10 0.000000
_____________________________________________________________
 
p-value for 10 kstests on 100 kstests:0.000000
 
|-------------------------------------------------------------|
| This is the RUNS test. It counts runs up, and runs down,|
|in a sequence of uniform [0,1) variables, obtained by float- |
|ing the 32-bit integers in the specified file. This example |
|shows how runs are counted: .123,.357,.789,.425,.224,.416,.95|
|contains an up-run of length 3, a down-run of length 2 and an|
|up-run of (at least) 2, depending on the next values. The |
|covariance matrices for the runs-up and runs-down are well |
|known, leading to chisquare tests for quadratic forms in the |
|weak inverses of the covariance matrices. Runs are counted |
|for sequences of length 10,000. This is done ten times. Then|
|another three sets of ten. |
|-------------------------------------------------------------|
 
The RUNS test for file out.bin
(Up and down runs in a sequence of 10000 numbers)
Set 1
runs up; ks test for 10 p's: 0.000000
runs down; ks test for 10 p's: 0.000000
Set 2
runs up; ks test for 10 p's: 0.000000
runs down; ks test for 10 p's: 0.000000
 
|-------------------------------------------------------------|
|This the CRAPS TEST. It plays 200,000 games of craps, counts|
|the number of wins and the number of throws necessary to end |
|each game. The number of wins should be (very close to) a |
|normal with mean 200000p and variance 200000p(1-p), and |
|p=244/495. Throws necessary to complete the game can vary |
|from 1 to infinity, but counts for all>21 are lumped with 21.|
|A chi-square test is made on the no.-of-throws cell counts. |
|Each 32-bit integer from the test file provides the value for|
|the throw of a die, by floating to [0,1), multiplying by 6 |
|and taking 1 plus the integer part of the result. |
|-------------------------------------------------------------|
 
RESULTS OF CRAPS TEST FOR out.bin
No. of wins: Observed Expected
144792 98585.858586
z-score=206.661, pvalue=0.00000
 
Analysis of Throws-per-Game:
 
Throws Observed Expected Chisq Sum of (O-E)^2/E
1 77556 66666.7 1778.664 1778.664
2 13850 37654.3 15048.623 16827.287
3 13973 26954.7 6252.163 23079.450
4 2054 19313.5 15423.906 38503.357
5 2436 13851.4 9407.831 47911.187
6 5251 9943.5 2214.498 50125.686
7 1265 7145.0 4838.989 54964.675
8 790 5139.1 3680.514 58645.189
9 9347 3699.9 8619.270 67264.459
10 8546 2666.3 12965.884 80230.343
11 37542 1923.3 659632.159 739862.502
12 523 1388.7 539.702 740402.204
13 915 1003.7 7.841 740410.045
14 2445 726.1 4068.740 744478.786
15 3536 525.8 17231.780 761710.566
16 6221 381.2 89476.023 851186.589
17 1696 276.5 7286.006 858472.595
18 859 200.8 2156.989 860629.584
19 584 146.0 1314.234 861943.818
20 259 106.2 219.773 862163.590
21 10352 287.1 352828.246 1214991.837
 
Chisq=1214991.84 for 20 degrees of freedom, p= 0.00000
 
SUMMARY of craptest on out.bin
p-value for no. of wins: 0.000000
p-value for throws/game: 0.000000
_____________________________________________________________

Please sign in to comment on this gist.

Something went wrong with that request. Please try again.