# Create a classifier learner using the dataloader defined above learn_clf = text_classifier_learner(dls_clf, # Specify a model architecture for the learner AWD_LSTM, # Specify the % in dropout layer for regularization drop_mult=0.5, # Specify a metric to evaluate performance while training metrics = accuracy_multi).to_fp16() # Load the embeddings from the finetuned language model in our learner object learn_clf = learn_clf.load_encoder("finetuned_language_model_encoder")