# First install shiny library library(shiny) # Set the system environment variables Sys.setenv(SPARK_HOME = "/home/emaasit/Desktop/Apache/spark-1.5.2") .libPaths(c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"), .libPaths())) #load the Sparkr library library(SparkR) # Create a spark context and a SQL context sc <- sparkR.init(master = "local") sqlContext <- sparkRSQL.init(sc) #create a sparkR DataFrame for the "iris" dataset iris_DF <- createDataFrame(sqlContext, iris) cache(iris_DF) # Define server logic required to predict the sepal length shinyServer(function(input, output) { # Statistical machine learning model_fit <- glm(Sepal_Length ~ Species + Petal_Width + Petal_Length, data = iris_DF, family = "gaussian") output$summary_model <- renderPrint({summary(model_fit)}) output$predict_new_value <- renderText({ input$predictSepalLength isolate({ Species <- as.character(input$species) Petal_Width <- as.double(input$petalWidth) Petal_Length <- as.double(input$petalLength) new_data_frame <- data.frame(Species = Species, Petal_Width = Petal_Width, Petal_Length = Petal_Length) newDataFrame <- createDataFrame(sqlContext, new_data_frame) predicted_value <- predict(model_fit, newData = newDataFrame) unlist(head(select(predicted_value, "prediction"))) }) }) })