This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Crypto.Util.number import long_to_bytes, bytes_to_long | |
from hashlib import shake_128 | |
# Utils & Arguments | |
def encode(x): | |
return long_to_bytes(x, 256) | |
def H(g, h): | |
return bytes_to_long(shake_128(encode(g) + encode(h)).digest(int(16))) | |
n = 20074101780713298951367849314432888633773623313581383958340657712957528608477224442447399304097982275265964617977606201420081032385652568115725040380313222774171370125703969133604447919703501504195888334206768326954381888791131225892711285554500110819805341162853758749175453772245517325336595415720377917329666450107985559621304660076416581922028713790707525012913070125689846995284918584915707916379799155552809425539923382805068274756229445925422423454529793137902298882217687068140134176878260114155151600296131482555007946797335161587991634886136340126626884686247248183040026945030563390945544619566286476584591 | |
# Find prime in [2, 10000000) | |
MAXV = 10000000 | |
is_prime = [True for _ in range(MAXV)] | |
is_prime[0] = is_prime[1] = False | |
for i in range(2, MAXV): | |
if is_prime[i]: | |
for j in range(i * i, MAXV, i): | |
is_prime[j] = False | |
primes = [ i for i in range(MAXV) if is_prime[i]] | |
# Let M be 2 * 3 * 5 * ... * 9999991 (primes in [2, 10000000)) | |
M = 1 | |
for i in primes: | |
M *= i | |
# Find b that | |
# b = 2^(2^k) | |
# h = 1 | |
# g = b^M | |
# m = H(g, h) | |
# s.t. | |
# m | M | |
# | |
# then we can get pi by | |
# pi = b^(-(M // m) * r) | |
# where r = 2^(2^64) % m | |
h = 1 | |
b = Mod(2, n) | |
g = b^M | |
idx = 0 | |
while True: | |
idx += 1 | |
if idx % 10000 == 0: | |
print(idx) | |
m = H(int(g), int(h)) | |
if M % m == 0: | |
break | |
b *= b | |
g *= g | |
# Get pi | |
assert(b^M == g) | |
m = H(int(g), int(h)) | |
assert(M % m == 0) | |
r = pow(2, 2^64, m) | |
pi = (b^(-M // m))^(r) | |
assert((pi^m) * (g^r) == 1) | |
# Print g, h, pi | |
print(f'g = {g}') | |
print(f'h = {h}') | |
print(f'pi = {pi}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment