Last active
December 18, 2019 09:30
-
-
Save Flock1/bdf0f95dc485c44a98cb0b4b14a5b325 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def act(self, data,t): #state | |
rate = self.get_exploration_rate(t) | |
if random.random() < rate: | |
options = self.model.predict(data) #state | |
options = np.squeeze(options) | |
action = random.randrange(self.action_size) | |
else: | |
options = self.model.predict(data) #state | |
options = np.squeeze(options) | |
action = options.argmax() | |
return action, options, rate | |
def train(self): | |
batch_size = 200 | |
t = 0 #increment | |
states, prob_actions, dlogps, drs, proj_data, reward_data =[], [], [], [], [], [] | |
tr_x, tr_y = [],[] | |
avg_reward = [] | |
reward_sum = 0 | |
ep_number = 0 | |
prev_state = None | |
first_step = True | |
new_state = self.value | |
data_inp = self.data | |
while ep_number<3000000: | |
prev_data = data_inp | |
prev_state = new_state | |
states.append(new_state) | |
action, probs, rate = self.act(data_inp,t) | |
prob_actions.append(probs) | |
y = np.zeros([self.action_size]) | |
y[action] = 1 | |
new_state = eval(command[action]) | |
proj = projection(new_state, self.final_state) | |
data_inp = [proj,action] | |
data_inp = np.reshape(data_inp,(1,1,len(data_inp))) | |
tr_x.append(data_inp) | |
if(t==0): | |
rw = reward(proj,0) | |
drs.append(rw) | |
reward_sum+=rw | |
elif(t<4): | |
rw = reward(new_state, self.final_state) | |
drs.append(rw) | |
print("present reward: ", rw) | |
reward_sum+=rw | |
elif(t==4): | |
if not np.allclose(new_state, self.final_state): | |
rw = -1 | |
drs.append(rw) | |
reward_sum+=rw | |
else: | |
rw = 1 | |
drs.append(rw) | |
reward_sum+=rw | |
print("reward till now: ",reward_sum) | |
dlogps.append(np.array(y).astype('float32') * probs) | |
print("dlogps before time step: ", len(dlogps)) | |
print("time step: ",t) | |
del(probs, action) | |
t+=1 | |
if(t==5 or np.allclose(new_state,self.final_state)): #### Done State | |
ep_number+=1 | |
ep_x = np.vstack(tr_x) #states | |
ep_dlogp = np.vstack(dlogps) | |
ep_reward = np.vstack(drs) | |
disc_rw = discounted_reward(ep_reward,self.gamma) | |
disc_rw = disc_rw.astype('float32') | |
disc_rw -= np.mean(disc_rw) | |
disc_rw /= np.std(disc_rw) | |
tr_y_len = len(ep_dlogp) | |
ep_dlogp*=disc_rw | |
if ep_number % batch_size == 0: | |
input_tr_y = prob_actions - self.learning_rate * ep_dlogp | |
input_tr_y = np.reshape(input_tr_y, (tr_y_len,1,6)) | |
self.model.train_on_batch(ep_x, input_tr_y) | |
tr_x, dlogps, drs, states, prob_actions, reward_data = [],[],[],[],[],[] | |
env = Environment() | |
new_state = env.reset() | |
proj = projection(state, self.final_state) | |
data_inp = [proj,5] | |
data_inp = np.reshape(data_inp,(1,1,len(data_inp))) | |
print("State after resetting: ", new_state) | |
t=0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment