Skip to content

Instantly share code, notes, and snippets.

@FurkanArslan
Forked from bbengfort/sentiment.py
Created July 24, 2017 12:57
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save FurkanArslan/f8bc3769406b5a63fce4824d1d7e90d3 to your computer and use it in GitHub Desktop.
Save FurkanArslan/f8bc3769406b5a63fce4824d1d7e90d3 to your computer and use it in GitHub Desktop.
An end-to-end demonstration of a Scikit-Learn SVM classifier trained on the positive and negative movie reviews corpus in NLTK.
import os
import time
import string
import pickle
from operator import itemgetter
from nltk.corpus import stopwords as sw
from nltk.corpus import wordnet as wn
from nltk import wordpunct_tokenize
from nltk import WordNetLemmatizer
from nltk import sent_tokenize
from nltk import pos_tag
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import SGDClassifier
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics import classification_report as clsr
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cross_validation import train_test_split as tts
def timeit(func):
"""
Simple timing decorator
"""
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
delta = time.time() - start
return result, delta
return wrapper
def identity(arg):
"""
Simple identity function works as a passthrough.
"""
return arg
class NLTKPreprocessor(BaseEstimator, TransformerMixin):
"""
Transforms input data by using NLTK tokenization, lemmatization, and
other normalization and filtering techniques.
"""
def __init__(self, stopwords=None, punct=None, lower=True, strip=True):
"""
Instantiates the preprocessor, which make load corpora, models, or do
other time-intenstive NLTK data loading.
"""
self.lower = lower
self.strip = strip
self.stopwords = set(stopwords) if stopwords else set(sw.words('english'))
self.punct = set(punct) if punct else set(string.punctuation)
self.lemmatizer = WordNetLemmatizer()
def fit(self, X, y=None):
"""
Fit simply returns self, no other information is needed.
"""
return self
def inverse_transform(self, X):
"""
No inverse transformation
"""
return X
def transform(self, X):
"""
Actually runs the preprocessing on each document.
"""
return [
list(self.tokenize(doc)) for doc in X
]
def tokenize(self, document):
"""
Returns a normalized, lemmatized list of tokens from a document by
applying segmentation (breaking into sentences), then word/punctuation
tokenization, and finally part of speech tagging. It uses the part of
speech tags to look up the lemma in WordNet, and returns the lowercase
version of all the words, removing stopwords and punctuation.
"""
# Break the document into sentences
for sent in sent_tokenize(document):
# Break the sentence into part of speech tagged tokens
for token, tag in pos_tag(wordpunct_tokenize(sent)):
# Apply preprocessing to the token
token = token.lower() if self.lower else token
token = token.strip() if self.strip else token
token = token.strip('_') if self.strip else token
token = token.strip('*') if self.strip else token
# If punctuation or stopword, ignore token and continue
if token in self.stopwords or all(char in self.punct for char in token):
continue
# Lemmatize the token and yield
lemma = self.lemmatize(token, tag)
yield lemma
def lemmatize(self, token, tag):
"""
Converts the Penn Treebank tag to a WordNet POS tag, then uses that
tag to perform much more accurate WordNet lemmatization.
"""
tag = {
'N': wn.NOUN,
'V': wn.VERB,
'R': wn.ADV,
'J': wn.ADJ
}.get(tag[0], wn.NOUN)
return self.lemmatizer.lemmatize(token, tag)
@timeit
def build_and_evaluate(X, y, classifier=SGDClassifier, outpath=None, verbose=True):
"""
Builds a classifer for the given list of documents and targets in two
stages: the first does a train/test split and prints a classifier report,
the second rebuilds the model on the entire corpus and returns it for
operationalization.
X: a list or iterable of raw strings, each representing a document.
y: a list or iterable of labels, which will be label encoded.
Can specify the classifier to build with: if a class is specified then
this will build the model with the Scikit-Learn defaults, if an instance
is given, then it will be used directly in the build pipeline.
If outpath is given, this function will write the model as a pickle.
If verbose, this function will print out information to the command line.
"""
@timeit
def build(classifier, X, y=None):
"""
Inner build function that builds a single model.
"""
if isinstance(classifier, type):
classifier = classifier()
model = Pipeline([
('preprocessor', NLTKPreprocessor()),
('vectorizer', TfidfVectorizer(tokenizer=identity, preprocessor=None, lowercase=False)),
('classifier', classifier),
])
model.fit(X, y)
return model
# Label encode the targets
labels = LabelEncoder()
y = labels.fit_transform(y)
# Begin evaluation
if verbose: print("Building for evaluation")
X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2)
model, secs = build(classifier, X_train, y_train)
if verbose: print("Evaluation model fit in {:0.3f} seconds".format(secs))
if verbose: print("Classification Report:\n")
y_pred = model.predict(X_test)
print(clsr(y_test, y_pred, target_names=labels.classes_))
if verbose: print("Building complete model and saving ...")
model, secs = build(classifier, X, y)
model.labels_ = labels
if verbose: print("Complete model fit in {:0.3f} seconds".format(secs))
if outpath:
with open(outpath, 'wb') as f:
pickle.dump(model, f)
print("Model written out to {}".format(outpath))
return model
def show_most_informative_features(model, text=None, n=20):
"""
Accepts a Pipeline with a classifer and a TfidfVectorizer and computes
the n most informative features of the model. If text is given, then will
compute the most informative features for classifying that text.
Note that this function will only work on linear models with coefs_
"""
# Extract the vectorizer and the classifier from the pipeline
vectorizer = model.named_steps['vectorizer']
classifier = model.named_steps['classifier']
# Check to make sure that we can perform this computation
if not hasattr(classifier, 'coef_'):
raise TypeError(
"Cannot compute most informative features on {} model.".format(
classifier.__class__.__name__
)
)
if text is not None:
# Compute the coefficients for the text
tvec = model.transform([text]).toarray()
else:
# Otherwise simply use the coefficients
tvec = classifier.coef_
# Zip the feature names with the coefs and sort
coefs = sorted(
zip(tvec[0], vectorizer.get_feature_names()),
key=itemgetter(0), reverse=True
)
topn = zip(coefs[:n], coefs[:-(n+1):-1])
# Create the output string to return
output = []
# If text, add the predicted value to the output.
if text is not None:
output.append("\"{}\"".format(text))
output.append("Classified as: {}".format(model.predict([text])))
output.append("")
# Create two columns with most negative and most positive features.
for (cp, fnp), (cn, fnn) in topn:
output.append(
"{:0.4f}{: >15} {:0.4f}{: >15}".format(cp, fnp, cn, fnn)
)
return "\n".join(output)
if __name__ == "__main__":
PATH = "model.pickle"
if not os.path.exists(PATH):
# Time to build the model
from nltk.corpus import movie_reviews as reviews
X = [reviews.raw(fileid) for fileid in reviews.fileids()]
y = [reviews.categories(fileid)[0] for fileid in reviews.fileids()]
model = build_and_evaluate(X,y, outpath=PATH)
else:
with open(PATH, 'rb') as f:
model = pickle.load(f)
print(show_most_informative_features(model))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment