Skip to content

Instantly share code, notes, and snippets.

View GeorgePearse's full-sized avatar

George Pearse GeorgePearse

View GitHub Profile
import pandas as pd
from umap import UMAP
from sentence_transformers import SentenceTransformer
# Load the universal sentence encoder
# Stay well clear of the direct Hugging Face API which is grim
sample_size = 30000
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(sentences[:sample_size])
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import numpy as np
import pandas as pd
selected_dataset = 'ag_news'
sample_size = 6000
dataset = load_dataset(selected_dataset)
dataset_df = pd.DataFrame(dataset['train'])
from fastapi import FastAPI, Path
from utils import create_connection, sql_to_df
import pandas as pd
app = FastAPI()
@app.get("/query/{query_name}")
async def root(
query_name: str = Path(
title="Query name of the query to run",
import sqlite3
import streamlit as st
import pandas as pd
import os
import plotly.express as px
def create_connection(db_file):
""" create a database connection to the SQLite database
specified by the db_file
import sqlite3
import streamlit as st
import pandas as pd
import os
def create_connection(db_file):
""" create a database connection to the SQLite database
specified by the db_file
:param db_file: database file
import streamlit as st
import os
import requests
vector_db_host = os.environ.get('VECTOR_DB_HOST')
# queries the DB to get the options
collections = [
record["name"]
for record in requests.get(f"{vector_db_host}/collections").json()["result"][
@GeorgePearse
GeorgePearse / get.py
Last active August 16, 2022 19:05
get.py
import streamlit as st
import requests
import os
vector_db_host = os.environ.get('VECTOR_DB_HOST')
request = st.text_input("request")
response = requests.get(f"{vector_db_host}/{request}").json()
st.json(response)
import sys
import numpy as np
import torch
import torch.nn as nn
def enable_dropout(model):
""" Function to enable the dropout layers during test-time
From https://stackoverflow.com/questions/63285197/measuring-uncertainty-using-mc-dropout-on-pytorch
"""
def return_dropout_model(model, with_dropout=True):
model = model.to(device)
if with_dropout:
print('Dropout still on.')
feats_list = list(model.features)
new_feats_list = []
for feat in feats_list:
new_feats_list.append(feat)
# Add a drop out layer after every