MLOps series #1 : Batch scoring with Mlflow Model (Mleap flavor) on Google Cloud Platform
#!/bin/bash | |
# setup.sh | |
# Create a bucket if doesn't exist. | |
# And load deployment scripts(.sh, .py) | |
# REGION - Region name (default eu) | |
# BUCKET - Bucker name (default cloud-demo-databrick-gcp) | |
#Pass REGION and BUCKET names (or use default parameters) | |
REGION=${1:-eu} | |
BUCKET=${2:-cloud-demo-databrick-gcp} | |
#Create a BUCKET name if not exist | |
if ! gsutil ls | grep -q gs://${BUCKET}/; then | |
gsutil mb -l ${REGION} -b on gs://${BUCKET} | |
#Upload init.sh, boston_house_prices_toscore.csv and Boston_lrModel_mleap.zip, score.py | |
gsutil cp /home/ivan_nardini/Databricks_MLflow_GCP/0_setup/cluster_config/init.sh gs://${BUCKET}/0_setup/cluster_config/init.sh | |
gsutil cp /home/ivan_nardini/Databricks_MLflow_GCP/1_data/boston_house_prices.csv gs://${BUCKET}/1_data/boston_house_prices_toscore.csv | |
gsutil cp /home/ivan_nardini/Databricks_MLflow_GCP/2_notebooks/output/ModelProjects_Boston_ML_lrModel.zip gs://${BUCKET}/2_model/Boston_lrModel_mleap.zip | |
gsutil cp /home/ivan_nardini/Databricks_MLflow_GCP/2_notebooks/output/score.py gs://${BUCKET}/2_model/score.py | |
fi | |
#Check BUCKET content | |
gsutil ls -r gs://${BUCKET}/** |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment