Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
A naive Kohonen-Grossberg Counterpropogation Network in Python
__author__ = 'Juxhin Dyrmishi Brigjaj'
import sys
import math
import random
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='A naive Kohonen-Grossberg Counterpropogation Network in Python')
parser.add_argument('-l', '--learning-rate', metavar='R', type=float, required=True,
help='Float indicating the learning rate (step) the network should use')
parser.add_argument('-f', '--csv-file', type=str, required=True,
help='Path to CSV file containing dataset')
parser.add_argument('-e', '--epoch', type=int, help="Number of epochs to complete", required=True, default=1000)
parser.add_argument('-n', '--neurons', type=int, help="Number of neurons (units) to generate", required=True, default=3)
return parser.parse_args()
def normalise(rows: list=()) -> list:
_result = []
for row in rows:
_vector_length = math.sqrt(sum([x**2 for x in row]))
_result.append([round(x / _vector_length, 4) for x in row])
return _result
def generate_random_units(col_len: int, row_len: int) -> list:
_result = []
for _ in range(0, row_len):
_result.append([round(random.uniform(0.0, 1.0), 4) for _ in range(0, col_len)])
return _result
def calculate_nets(row, units):
_nets = []
for unit in units:
_net = 0.0
for i, _ in enumerate(unit):
_net += round(row[i] * unit[i], 4)
_nets.append(round(_net, 4))
return _nets
def update_units(learning_rate: float, nets: list, row: list, units: list) -> bool:
_i = nets.index(max(nets))
for _j, column in enumerate(row):
units[_i][_j] = round(units[_i][_j] + learning_rate * (column - units[_i][_j]), 4)
def main():
args = parse_args()
learning_rate = args.learning_rate
unnormalised_dataset = []
try:
with open(args.csv_file, 'r') as csv_file:
for line in csv_file:
unnormalised_dataset.append([float(x) for x in line.split(',')])
except TypeError as e:
print("[!] FATAL: Dataset is malformed. Unable to parse values as floats.\n{}".format(str(e)))
print("[+] Normalising dataset")
rows = normalise(unnormalised_dataset)
for row in rows:
print('\t'.join([str(x) for x in row]))
# Used to determine the number of columns in generate_random_units call
# assuming that the dataset is consistent in width
__unit_length = len(unnormalised_dataset[0])
random_units = generate_random_units(__unit_length, args.neurons)
print("\n[+] Starting Weights:")
for unit in random_units:
print(','.join([str(x) for x in unit]))
print()
for i in range(1, args.epoch + 1):
if i % 100 == 0:
print("[+] Running Epoch #{}".format(str(i)))
for row in rows:
nets = calculate_nets(row, random_units)
update_units(learning_rate, nets, row, random_units)
print("\n[+] Final Weights:")
for unit in random_units:
print(','.join([str(x) for x in unit]))
if __name__ == '__main__':
main()
@Sumit1673

This comment has been minimized.

Copy link

Sumit1673 commented Feb 24, 2020

Hi, thanks for the code. But where did you code Grosberg in this file?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.