{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#jupyter notebook needs to be started with prefix KERAS_BACKEND=theano\n",
    "import theano\n",
    "import keras\n",
    "from keras.models import Sequential\n",
    "from keras.layers import Dense, Dropout, Flatten #Dropout not used yet\n",
    "from keras.layers import Conv2D, MaxPooling2D #does not know when to use MaxPooling yet\n",
    "from keras.losses import categorical_crossentropy #loss function normally used for classification problems, some other can be tried\n",
    "from keras.optimizers import adam #very powerful optimizer (link to an article comparing it to others)\n",
    "from keras.callbacks import EarlyStopping #to stop the algorithm sooner if the cnn does not improve for some time\n",
    "                                        #it is inevitable to explain the concept of callback\n",
    "from keras.callbacks import History #for tracing the loss\n",
    "from keras.utils import to_categorical #needed for converting labels into a good format\n",
    "\n",
    "    \n",
    "import numpy as np\n",
    "import pandas as pd #for data handling\n",
    "from sklearn.preprocessing import OneHotEncoder\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import sklearn as sk\n",
    "from sklearn.preprocessing import MinMaxScaler #for MinMaxScaler()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}