Created
May 7, 2025 13:14
-
-
Save Kouhei-Takagi/6fa1626b2b770d18000c3e1673604fa6 to your computer and use it in GitHub Desktop.
Correlation Features and USD/JPY(corr=0.9397)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas_datareader.data as web | |
| from datetime import datetime | |
| import pandas as pd | |
| start = datetime(2015, 6, 1) | |
| end = datetime(2025, 5, 1) | |
| # Retrieve monthly data from FRED | |
| gold = web.DataReader("IR14270", "fred", start, end) | |
| oil = web.DataReader("DCOILWTICO", "fred", start, end) | |
| dgs2 = web.DataReader("DGS2", "fred", start, end) | |
| dgs5 = web.DataReader("DGS5", "fred", start, end) | |
| dgs10 = web.DataReader("DGS10", "fred", start, end) | |
| dgs30 = web.DataReader("DGS30", "fred", start, end) | |
| jpy = web.DataReader("EXJPUS", "fred", start, end) | |
| # Merge data and rename columns | |
| df = pd.concat([gold, oil, dgs2, dgs5, dgs10, dgs30, jpy], axis=1).dropna() | |
| df.columns = ["Gold", "Oil", "DGS2", "DGS5", "DGS10", "DGS30", "JPY"] | |
| # Create a combined price index (simple weighted formula) | |
| df["Combined_Price"] = ( | |
| df["Gold"] * 1 | |
| + df["Oil"] * 2.5 | |
| ) * (df["DGS10"] * 1) | |
| # Calculate correlation coefficient | |
| corr = df["Combined_Price"].corr(df["JPY"]) | |
| print("Correlation coefficient (Combined Price × JPY):", corr) | |
| # Display result | |
| print(df[["Combined_Price", "JPY"]]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment