Skip to content

Instantly share code, notes, and snippets.

@McSinyx
Last active April 15, 2020 09:37
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save McSinyx/d49fddff4bd1f2768cba9763b8f1c0c4 to your computer and use it in GitHub Desktop.
Save McSinyx/d49fddff4bd1f2768cba9763b8f1c0c4 to your computer and use it in GitHub Desktop.
System Cascade Connection
Display the source blob
Display the rendered blob
Raw
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
\documentclass[a4paper,12pt]{article}
\usepackage[english,vietnamese]{babel}
\usepackage{amsmath}
\usepackage{enumerate}
\usepackage{lmodern}
\title{System Cascade Connection}
\author{{\selectlanguage{vietnamese}Nguyễn Gia Phong}}
\begin{document}
\selectlanguage{english}\maketitle
Given two discrete-time systems $A$ and $B$ connected in cascade to form
a new system $C = x \mapsto B(A(x))$.
\section{Linearity}
If $A$ and $B$ are linear, i.e. for all signals $x_i$ and scalars $a_i$,
\begin{align*}
A\left(n \mapsto \sum_i a_i x_i[n]\right) &= n \mapsto \sum_i a_i A(x_i)[n]\\
B\left(n \mapsto \sum_i a_i x_i[n]\right) &= n \mapsto \sum_i a_i B(x_i)[n]
\end{align*}
then $C$ is also linear
\begin{align*}
C\left(n \mapsto \sum_i a_i x_i[n]\right)
&= B\left(A\left(n \mapsto \sum_i a_i x_i[n]\right)\right)\\
&= B\left(n \mapsto \sum_i a_i A(x_i)[n]\right)\\
&= n \mapsto \sum_i a_i B(A(x_i))[n]\\
&= n \mapsto \sum_i a_i C(x_i)[n]
\end{align*}
\section{Time Invariance}
If $A$ and $B$ are time invariant, i.e. for all signals $x$ and integers $k$,
\begin{align*}
A(n \mapsto x[n - k]) &= n \mapsto A(x)[n - k]\\
B(n \mapsto x[n - k]) &= n \mapsto B(x)[n - k]\\
\end{align*}
then $C$ is also time invariant
\begin{align*}
C(n \mapsto x[n - k])
&= B(A(n \mapsto x[n - k]))\\
&= B(n \mapsto A(x)[n - k])\\
&= n \mapsto B(A(x))[n - k]\\
&= n \mapsto C(x)[n - k]
\end{align*}
\section{LTI Ordering}
If $A$ and $B$ are linear and time-invariant, there exists signals $g$ and $h$
such that for all signals $x$, $A = x \mapsto x * g$ and $B = x \mapsto x * h$,
thus \[B(A(x)) = B(x * g) = x * g * h = x * h * g = A(x * h) = A(B(x))\]
or interchanging $A$ and $B$ order does not change $C$.
\section{Causality}
If $A$ and $B$ are causal, i.e. for all signals $x$, $y$ and integers $k$,
\begin{multline*}
x[n] = y[n]\quad\forall n < k
\Longrightarrow\begin{cases}
A(x)[n] = A(y)[n]\quad\forall n < k\\
B(x)[n] = B(y)[n]\quad\forall n < k
\end{cases}\\
\Longrightarrow B(A(x))[n] = B(A(y))[n]\quad\forall n < k
\iff C(x)[n] = C(y)[n]\quad\forall n < k
\end{multline*}
then $C$ is also causal.
\section{BIBO Stability}
If $A$ and $B$ are stable, i.e. there exists a signal $x$
and scalars $a$, $b$ that
\begin{align*}
|x[n]| < a\quad\forall n \in \mathbb Z
&\Longrightarrow |A(x)[n]| < b\quad\forall n \in \mathbb Z\\
|x[n]| < a\quad\forall n \in \mathbb Z
&\Longrightarrow |B(x)[n]| < b\quad\forall n \in \mathbb Z
\end{align*}
then $C$ is also stable, i.e. there exists a signal $x$
and scalars $a$, $b$, $c$ that
\begin{align*}
|x[n]| < a\;\forall n \in \mathbb Z
&\Longrightarrow |A(x)[n]| < b\;\forall n \in \mathbb Z\\
&\Longrightarrow |B(A(x))[n]| < c\;\forall n \in \mathbb Z
\iff |C(x)[n]| < c\;\forall n \in \mathbb Z
\end{align*}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment