Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
base_learning_rate = 0.0001
vgg16_base.trainable = False
vgg16 = Wrapper(vgg16_base)
vgg16.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate),
loss='binary_crossentropy',
metrics=['accuracy'])
googlenet_base.trainable = False
googlenet = Wrapper(googlenet_base)
googlenet.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate),
loss='binary_crossentropy',
metrics=['accuracy'])
resnet_base.trainable = False
resnet = Wrapper(resnet_base)
resnet.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate),
loss='binary_crossentropy',
metrics=['accuracy'])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment