{{ message }}

Instantly share code, notes, and snippets.

# Robert Talbert RobertTalbert

Created Jul 30, 2021
View MTH 225 module level objectives.tex
 \section{Appendix B: MTH 225 Learning Targets} \label{sec:learning-targets} \begin{subsubsection}{Module 1: Computer Arithmetic} \begin{description} \tightlist \item[CA.1] \textbf{(CORE)} \ I can represent an integer in base 2, 8, 10, and 16 and represent a negative integer in base 2 using two's complement notation. \item[CA.2] I can perform addition, subtraction, multiplication, and division in binary. \end{description}
Created Jul 30, 2021
View MTH 225 modules.md

Course module structure: The course content is split up into five modules:

• Module 1: Computer arithmetic. Representing integers in binary, octal, and hexadecimal; binary arithmetic; the Division Algorithm and modular arithmetic.

• Module 2: Logic. Logical propositions, conditional statements, truth tables, predicates, and quantification.

Created Jul 30, 2021
View MTH 225 course level objectives.md

Course-level learning objectives: Upon completion of MTH 225, you will be able to:

• Represent integers using different number bases, and perform integer arithmetic using different bases and modular arithmetic.

• Formulate, manipulate, and determine the truth of logical expressions using symbolic logic.

• Formulate and solve computational problems using sets and functions.

Created Jun 1, 2021
View mth225-LO-version1.md

# MTH 225 Learning Objectives

## By module

• Module 1: Arithmetic
• Given an integer in base 2, 8, 10, or 16, represent it using another base.
• Add, subtract, multiply, and divide integers in base 2, 8, and 16.
• Use two's complement to represent a negative integer in binary.
• State the Division Algorithm and use it to find the quotient and remainder when dividing one positive integer by another.
Created Jun 19, 2019
View Five_Question_Summary.py
 # Code for generating Five-Question Summary reports. # Import basic packages import pandas as pd import matplotlib.pyplot as plt import numpy as np # Read in student response data; change name of file as needed col_names = ["Challenge", "Support", "Competence", "Autonomy", "Relatedness"]
Last active Apr 6, 2021
View 200words.md

Semper Libero condimentum praesent consectetuer eget ornare aliquam sagittis ligula nonummy. Placerat libero laoreet sed orci vitae id sit vestibulum sit mi mattis. Eleifend sollicitudin phasellus litora sem sociis vel ac dignissim auctor venenatis hendrerit ornare dolor inceptos ante class. Praesent lectus conubia bibendum class iaculis odio potenti fermentum amet fusce vulputate ultricies cum phasellus sed volutpat ligula. Eros. Dictum sociis ultricies accumsan mus. Congue est convallis elit velit facilisis a commodo convallis torquent feugiat.

Parturient, pharetra mattis felis nam magnis. Dolor tristique. Eu Sagittis quis hendrerit tempus scelerisque mus aliquam ipsum, commodo senectus mattis adipiscing inceptos. Proin molestie ad aliquam curae; ligula habitasse curae; sem gravida magna scelerisque tortor nisl eleifend sapien aptent cum accumsan sociis porttitor mi. Primis. Netus sagittis et, aliquam erat sit posuere nonummy tellus euismod donec vivamus. Ad sollicitudin Quis platea netus id lectus velit a

Created Nov 20, 2020
View fib.py
 def fib(n): if n == 0 or n == 1: return 1 else: return fib(n-1) + fib(n-2)
Created Oct 30, 2020
View 10A-DP-sequence.py
 def A(n): if n == 1: return 1 elif n == 2: return 4 else: return A(n-1) + 2*A(n-2)
Last active Oct 16, 2020
Sage code for generating random weighted undirected graph
View weightedgraphs.py
 ## Generates a random weighted undirected graph. ## n = number of nodes ## p = probability that two nodes are adjacent; must be between 0 and 1. ## lower_weight and upper_weight = lower and upper edge weights, respectively. If left out, the defaults are 1 and 100. ## ## Examples of usage: ## g = random_weighted_graph(20, 0.5) <-- Uses default lower and upper weights of 1 and 100. ## h = random_weighted_graph(10, 0.35, 5, 50) <-- Weights will be integers between 5 and 50. ## g.show(edge_labels = True) <-- Include the argument to display the weights ## h.show() <-- leave the argument out to hide the weights
Created Oct 11, 2020
View Week7schedule.md

Here's a suggested work plan for the week. As always, this assumes you are putting aside 2 hours per weekday for work on MTH 201; if you can do that, and stick to the plan, you'll be free and clear for the weekend.

• Monday: 30 minutes to get started on Daily Prep for Module 6B; 30 minutes to get started with WeBWorK for Module 5; 30 minutes to work on an AEP (new draft or a revision); 30 minutes on the Derivative Computation WeBWorK set.
• Tuesday: 30 minutes to complete Daily Prep 6B; 30 minutes on an AEP; 30 minutes on the WebWorK for Module 6; 30 more minutes the Derivative Computation set.
• Wednesday: 30-45 minutes to complete Followup for Module 6A; 30 minutes on WeBWorK for Module 6; 30 minutes on an AEP; 30 minutes checking in with Campuswire and asking questions.
• Thursday: 30 minutes to start Followup for Module 6B; 30 minutes for WeBWorK; then an hour on an AEP.
• Friday: 30 minutes to complete Followup for Module 6B; 30 minutes to complete WeBWorK for Module 6; 30