This class will enhance each frame to it's desired scale
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
############################################## | |
#### Updated By: SATYAKI DE #### | |
#### Updated On: 12-Nov-2021 #### | |
#### #### | |
#### Objective: This python script will #### | |
#### enhance the old existing frame by #### | |
#### applying machine-learning algorithm #### | |
#### to improve their quality one at a #### | |
#### time. #### | |
#### #### | |
############################################## | |
import av | |
import os | |
import platform as pl | |
import numpy as np | |
import cv2 | |
import glob | |
from PIL import Image | |
from numpy import asarray | |
import numpy as np | |
from clsConfig import clsConfig as cf | |
import sys | |
# Global Variable | |
os_det = pl.system() | |
if os_det == "Windows": | |
sep = '\\' | |
else: | |
sep = '/' | |
class clsFrameEnhance: | |
def __init__(self): | |
self.fileNm = str(cf.conf['FILE_NAME']) | |
self.base_path = str(cf.conf['INIT_PATH']) | |
def show(self, enhanced_path, fileNameOnly, buff): | |
cv2.imwrite(enhanced_path + fileNameOnly, buff) | |
def unsharp_mask(self, image, kernel_size=(3, 3), sigma=1.0, amount=2.0, threshold=2): | |
"""Return a sharpened version of the image, using an unsharp mask.""" | |
blurred = cv2.GaussianBlur(image, kernel_size, sigma) | |
sharpened = float(amount + 1) * image - float(amount) * blurred | |
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) | |
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) | |
sharpened = sharpened.round().astype(np.uint8) | |
if threshold > 0: | |
low_contrast_mask = np.absolute(image - blurred) < threshold | |
np.copyto(sharpened, image, where=low_contrast_mask) | |
return sharpened | |
def doEnhance(self, dInd, var): | |
try: | |
base_path = self.base_path | |
temp_path = base_path + sep + 'Temp' + sep | |
enhanced_path = base_path + sep + 'Enhanced' + sep | |
for filename in sorted(glob.glob(temp_path + '*.jpg')): | |
print('Full File Name: ', str(filename)) | |
img = cv2.imread(filename) | |
if img is None: | |
print('Failed to load image file:', filename) | |
sys.exit(1) | |
sharpened_image = self.unsharp_mask(img) | |
img = np.asarray(sharpened_image) | |
dst = cv2.fastNlMeansDenoising(img,None,7,7,21) | |
Inten_matrix = np.ones(dst.shape, dtype='uint8')*20 | |
bright_img = cv2.add(dst, Inten_matrix) | |
head, tail = os.path.split(filename) | |
self.show(enhanced_path, tail, bright_img) | |
# Remove Files | |
os.remove(filename) | |
print('Successfully Enhanced the Frames!') | |
return 0 | |
except Exception as e: | |
x = str(e) | |
print('Error: ', x) | |
return 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment