Skip to content

Instantly share code, notes, and snippets.

@Shashi18
Last active December 15, 2017 14:11
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save Shashi18/8947a43081d59f7c43e16f8af7716335 to your computer and use it in GitHub Desktop.
Save Shashi18/8947a43081d59f7c43e16f8af7716335 to your computer and use it in GitHub Desktop.
Self Balancing Robot
/* Developed By: www.hellocodings.com----------------------------
---Shashi Suman--------------------------------------------------
---Modify as you want--------------------------------------------
---------------------------------------------------------------*/
#include<Wire.h>
const int MPU_addr=0x68;
double AccelX,AccelY,AccelZ,Tmp,GyroX,GyroY,GyroZ; //These will be the raw data from the MPU6050.
uint32_t timer; //it's a timer, saved as a big-ass unsigned int. We use it to save times from the "micros()" command and subtract the present time in microseconds from the time stored in timer to calculate the time for each loop.
double Angle_X, Angle_Y; //These are the angles in the complementary filter
#define degconvert 57.29577951 //there are like 57 degrees in a radian.
#define m1_left 12
#define m1_right 10
#define m2_left 3
#define m2_right 4
#define Kp 110
#define Kd 0.09
#define Ki 90
#define sampleTime 0.005
#define targetAngle 0
volatile int output = 0;
volatile float currentAngle, prevAngle=0, error, prevError=0, errorSum=0;
void setup() {
pinMode(m1_left, OUTPUT);
pinMode(m1_right, OUTPUT);
pinMode(m2_left, OUTPUT);
pinMode(m2_right, OUTPUT);
Wire.begin();
#if ARDUINO >= 157
Wire.setClock(400000UL); // Set I2C frequency to 400kHz
#else
TWBR = ((F_CPU / 400000UL) - 16) / 2; // Set I2C frequency to 400kHz
#endif
Wire.beginTransmission(MPU_addr);
Wire.write(0x6B); // PWR_MGMT_1 register
Wire.write(0); // set to zero (wakes up the MPU-6050)
Wire.endTransmission(true);
Serial.begin(57600);
delay(100);
//setup starting angle
//1) collect the data
Wire.beginTransmission(MPU_addr);
Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
Wire.endTransmission(false);
Wire.requestFrom(MPU_addr,14,true); // request a total of 14 registers
AccelX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)
AccelY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AccelZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp=Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyroX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyroY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyroZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
double roll = atan2(AccelY, AccelZ)*degconvert;
double pitch = atan2(-AccelX, AccelZ)*degconvert;
double gyroXangle = roll;
double gyroYangle = pitch;
double Angle_X = roll;
double Angle_Y = pitch;
//start a timer
timer = micros();
}
void command(int L_M_Speed, int R_M_Speed) {
if(L_M_Speed >= 0) {
analogWrite(m2_left, L_M_Speed);
digitalWrite(m2_right, LOW);
}
else {
analogWrite(m2_left, 255 + L_M_Speed);
digitalWrite(m2_right, HIGH);
}
if(R_M_Speed >= 0) {
analogWrite(m1_right, R_M_Speed);
digitalWrite(m1_left, LOW);
}
else {
analogWrite(m1_right, 255 + R_M_Speed);
digitalWrite(m1_left, HIGH);
}
}
void emergency(){
digitalWrite(m2_right, LOW);
digitalWrite(m1_right, LOW);
digitalWrite(m2_left, LOW);
digitalWrite(m1_left, LOW);
}
void loop(){
//Now begins the main loop.
//Collect raw data from the sensor.
Wire.beginTransmission(MPU_addr);
Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
Wire.endTransmission(false);
Wire.requestFrom(MPU_addr,14,true); // request a total of 14 registers
AccelX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)
AccelY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AccelZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp=Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyroX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyroY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyroZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
double dt = (double)(micros() - timer) / 1000000;
timer = micros();
double roll = atan2(AccelY, AccelZ)*degconvert;
double pitch = atan2(-AccelX, AccelZ)*degconvert;
double gyroXrate = GyroX/131.0;
double gyroYrate = GyroY/131.0;
Angle_X = 0.99 * (Angle_X + gyroXrate * dt) + 0.01 * roll;
Angle_Y = 0.99 * (Angle_Y + gyroYrate * dt) + 0.01 * pitch;
currentAngle = Angle_Y;
if(currentAngle > 50 && currentAngle < -50){
emergency();
}
else if(currentAngle >-0.3 && currentAngle <0.3){
emergency();
delay(50);
}
else{
error = currentAngle - targetAngle;
errorSum = errorSum + error;
errorSum = constrain(errorSum, -300, 300);
//calculate output from P, I and D values
output = Kp*(error) + Ki*(errorSum)*sampleTime - Kd*(currentAngle-prevAngle)/sampleTime;
output = constrain(output, -255, 255);
command(output, output);
prevAngle = currentAngle;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment