Created
November 1, 2015 19:27
-
-
Save Strilanc/230c486dee03af917708 to your computer and use it in GitHub Desktop.
A python 3 program that print the operation matrix for a CROT operation from the paper at http://arxiv.org/abs/1510.00409 . The printed operation is just a controlled quarter-turn around the Y axis.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import numpy as np | |
import math | |
import cmath | |
np.set_printoptions(precision=2, suppress=True) | |
qubit_count = 2 | |
σx = np.mat([[0, 1], [1, 0]]) | |
σy = np.mat([[0, -1j], [1j, 0]]) | |
σz = np.mat([[1, 0], [0, -1]]) | |
π = math.pi | |
def CROT(c, t, a, θ): | |
return R(t, θ/2) * Rc(c, t, a, θ/2, True) | |
def Rc(c, t, a, θ, on): | |
mexp = matrix_lift(lambda λ: cmath.exp((-1 if on else 1) * λ * 1j * θ / 2)) | |
op = expand(σy, t)*expand(a, c) | |
return mexp(op) | |
def R(t, θ): | |
mexp = matrix_lift(lambda λ: cmath.exp(λ * 1j * θ / 2)) | |
op = expand(σy, t) | |
return mexp(op) | |
def expand(qubit_op_matrix, qubit_index): | |
""" | |
Expands a single-qubit operation to apply to one of the qubits amongst several. | |
""" | |
post = np.identity(1 << qubit_index) | |
pre = np.identity(1 << (qubit_count - qubit_index - 1)) | |
return np.kron(np.kron(pre, qubit_op_matrix), post) | |
def matrix_lift(f): | |
""" | |
Lifts a function so it modifies matrices instead of numbers, by taking the | |
spectral decomposition of the matrix and using the function to transform | |
its eigenvalues. | |
""" | |
def matrix_lift_helper(m): | |
w, v = np.linalg.eig(m) | |
result = np.mat(np.zeros(m.shape, np.complex128)) | |
for i in range(len(w)): | |
eigen_val = w[i] | |
eigen_vec = np.mat(v[:, i]) | |
eigen_mat = np.dot(eigen_vec, eigen_vec.H) | |
result += f(eigen_val) * eigen_mat | |
return result | |
return lambda m: matrix_lift_helper(m) | |
print(CROT(1, 0, σz, π/2)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment