-
-
Save TaiToTo/74cc73c07599b7fb1d9854ad8eafc037 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"execution": { | |
"iopub.execute_input": "2020-09-27T01:27:47.394726Z", | |
"iopub.status.busy": "2020-09-27T01:27:47.394164Z", | |
"iopub.status.idle": "2020-09-27T01:27:47.395964Z", | |
"shell.execute_reply": "2020-09-27T01:27:47.396326Z" | |
}, | |
"id": "PED3bIpOYkBu" | |
}, | |
"outputs": [], | |
"source": [ | |
"class Transformer(tf.keras.Model):\n", | |
" def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, \n", | |
" target_vocab_size, pe_input, pe_target, rate=0.1):\n", | |
" super(Transformer, self).__init__()\n", | |
"\n", | |
" self.encoder = Encoder(num_layers, d_model, num_heads, dff, \n", | |
" input_vocab_size, pe_input, rate)\n", | |
"\n", | |
" self.decoder = Decoder(num_layers, d_model, num_heads, dff, \n", | |
" target_vocab_size, pe_target, rate)\n", | |
"\n", | |
" self.final_layer = tf.keras.layers.Dense(target_vocab_size)\n", | |
" \n", | |
" def call(self, inp, tar, training, enc_padding_mask, \n", | |
" look_ahead_mask, dec_padding_mask):\n", | |
"\n", | |
" enc_output = self.encoder(inp, training, enc_padding_mask) # (batch_size, inp_seq_len, d_model)\n", | |
" \n", | |
" '''\n", | |
" The output of the last layer of the encoder is passed to all the layers of the decoder. \n", | |
" '''\n", | |
" #dec_output.shape == (batch_size, tar_seq_len, d_model)\n", | |
" dec_output, attention_weights = self.decoder(\n", | |
" tar, enc_output, training, look_ahead_mask, dec_padding_mask)\n", | |
" \n", | |
" '''\n", | |
" Tee final part of Transformer model. In case of machine translation, you predict a \n", | |
" 'target_vocab_size' dimensional vector at every potition of the target sentence. \n", | |
" '''\n", | |
" final_output = self.final_layer(dec_output) # (batch_size, tar_seq_len, target_vocab_size)\n", | |
" \n", | |
" return final_output, attention_weights" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"num_layers = 4\n", | |
"d_model = 128\n", | |
"dff = 512\n", | |
"num_heads = 8\n", | |
"\n", | |
"input_vocab_size = 10000 + 2\n", | |
"target_vocab_size = 10000 + 2\n", | |
"dropout_rate = 0.1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"sample_transformer = Transformer(num_layers, d_model, num_heads, dff,\n", | |
" input_vocab_size, target_vocab_size, \n", | |
" pe_input=input_vocab_size, \n", | |
" pe_target=target_vocab_size,\n", | |
" rate=dropout_rate)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(64, 37, 10002)\n" | |
] | |
} | |
], | |
"source": [ | |
"# Let's put in sample inputs and targets in the sample Transformer model. \n", | |
"# In this case, the max length of the input sentences is 38, and that of targets is 37. \n", | |
"# In practice, all the elements of 'sample_input' and 'sample_target' are integers. \n", | |
"sample_input = tf.random.uniform((64, 38), dtype=tf.int64, minval=0, maxval=200)\n", | |
"sample_target = tf.random.uniform((64, 37), dtype=tf.int64, minval=0, maxval=200)\n", | |
"\n", | |
"fn_out, _ = sample_transformer(sample_input, sample_target, training=False, \n", | |
" enc_padding_mask=None, \n", | |
" look_ahead_mask=None,\n", | |
" dec_padding_mask=None)\n", | |
"\n", | |
"print(fn_out.shape) # (batch_size, tar_seq_len, target_vocab_size)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# As you can see, each target entences is a (37, 10002) sized matrix. " | |
] | |
} | |
], | |
"metadata": { | |
"accelerator": "GPU", | |
"colab": { | |
"collapsed_sections": [ | |
"s_qNSzzyaCbD" | |
], | |
"name": "transformer.ipynb", | |
"toc_visible": true | |
}, | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.8" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment