Skip to content

Instantly share code, notes, and snippets.

@wchargin
Last active February 1, 2016 21:38
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save wchargin/917555cdf0e84d23c569 to your computer and use it in GitHub Desktop.
Save wchargin/917555cdf0e84d23c569 to your computer and use it in GitHub Desktop.
linearity of the Lorentz transformation
Display the source blob
Display the rendered blob
Raw
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
\documentclass{article}
\usepackage{wcsetup}
\usepackage{parskip}
\begin{document}
Consider an inertial reference frame~$s$,
and another inertial reference frame~$s'$
moving at a velocity~$v$ relative to~$s$.
Define the transformation~$L : \R^2 \to \R^2$
by
\begin{equation*}
L((x, ct)) = (\gamma (x - \beta c t), \gamma (c t - \beta x)),
\end{equation*}
where $\beta = v / c$ and~$\gamma = (1 - \beta^2)^{-1/2}$.
This is the \noun{Lorentz transformation}.
\bigskip
\begin{claim*}
The Lorentz~transformation is a linear transformation.
\end{claim*}
\begin{proof}
Let~$(x_1, c t_1)$ and~$(x_2, c t_2)$ be events
in the reference frame~$s$.
Then
\begin{align*}
&\mathrel{\phantom=} L((x_1, c t_1) + (x_2, c t_2)) \\
&= L((x_1 + x_2, ct_1 + ct_2)) \\
&= L((x_1 + x_2, c(t_1 + ct_2))) \\
&=
(\gamma ((x_1 + x_2) - \beta c (t_1 + t_2)),
\gamma (c (t_1 + t_2) - \beta (x_1 + x_2))) \\
&=
((\gamma (x_1 - \beta c t_1)) + (\gamma (x_2 - \beta c t_2)),
(\gamma (c t_1 - \beta x_1)) + (\gamma (c t_2 - \beta x_2))) \\
&=
(\gamma (x_1 - \beta c t_1), \gamma (c t_1 - \beta x_1)) +
(\gamma (x_2 - \beta c t_2), \gamma (c t_2 - \beta x_2)) \\
&= L((x_1, c t_1)) + L((x_2, c t_2)),
\end{align*}
so $L$~is additive.
Now let~$(x, c t)$ be an event in the reference frame~$s$,
and let~$\lambda \in \R$ be a scalar.
Then
\begin{align*}
&\mathrel{\phantom=} L(\lambda (x, c t)) \\
&= L((\lambda x, \lambda c t)) \\
&= L((\lambda x, c (\lambda t))) \\
&=
(\gamma (\lambda x - \beta c (\lambda t)),
\gamma (c (\lambda t) - \beta (\lambda x))) \\
&= (\lambda \gamma (x - \beta c t),
\lambda \gamma (c t - \beta x)) \\
&= \lambda (\gamma (x - \beta c t), \gamma (c t - \beta x)) \\
&= \lambda \, L((x, c t)),
\end{align*}
so $L$~is $1$-homogeneous.
Therefore, $L$~is a linear operator.
\end{proof}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment