Last active
August 12, 2024 12:41
-
-
Save a-r-r-o-w/5183d75e452a368fd17448fcc810bd3f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import time | |
import torch | |
torch.set_float32_matmul_precision("high") | |
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler | |
from diffusers.utils import export_to_gif | |
def load_pipeline(use_compile: bool = False): | |
id = "THUDM/CogVideoX-2b" | |
pipe = CogVideoXPipeline.from_pretrained( | |
id, | |
torch_dtype=torch.float16 | |
).to("cuda") | |
pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
pipe.set_progress_bar_config(disable=True) | |
if use_compile: | |
torch._inductor.config.conv_1x1_as_mm = True | |
torch._inductor.config.coordinate_descent_tuning = True | |
torch._inductor.config.epilogue_fusion = False | |
torch._inductor.config.coordinate_descent_check_all_directions = True | |
pipe.transformer.to(memory_format=torch.channels_last) | |
# pipe.vae.to(memory_format=torch.channels_last_3d) # does not work | |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
# pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune") # does not work due to torch._dynamo.exc.InternalTorchDynamoError: | |
# Error: accessing tensor output of CUDAGraphs that has been overwritten by a subsequent run. | |
# Stack trace: File "/home/aryan/work/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py", line 137, | |
# in forward self.conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone(). To prevent overwriting, clone the tensor outside of torch.compile() | |
# or call torch.compiler.cudagraph_mark_step_begin() before each model invocation. | |
# TODO: fix in future | |
return pipe | |
def run_benchmark(num_warmups: int = 2, num_repeats: int = 10, use_compile: bool = False): | |
pipe = load_pipeline(use_compile) | |
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance." | |
for _ in range(num_warmups): | |
_ = pipe( | |
prompt=prompt, | |
num_frames=48, | |
num_inference_steps=50, | |
guidance_scale=6, | |
generator=torch.manual_seed(42), | |
) | |
start = time.time() | |
for _ in range(num_repeats): | |
video = pipe( | |
prompt=prompt, | |
num_frames=48, | |
num_inference_steps=50, | |
guidance_scale=6, | |
generator=torch.manual_seed(42), | |
).frames[0] | |
end = time.time() | |
avg_inference_time = (end - start) / num_repeats | |
print(f"Average inference time: {avg_inference_time:.3f} seconds.") | |
export_to_gif(video, f"cogvideox_compile_test_{args.use_compile}.gif") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--num_warmups", type=int, default=2) | |
parser.add_argument("--num_repeats", type=int, default=10) | |
parser.add_argument("--use_compile", action="store_true", default=False) | |
args = parser.parse_args() | |
run_benchmark(args.num_warmups, args.num_repeats, args.use_compile) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment