Last active
March 5, 2020 22:16
-
-
Save accessnash/bc1fd2cc30300501d10da56860c3a6ad to your computer and use it in GitHub Desktop.
Association rule learning for Market basket optimisation dataset from Udemy M/L course(similar algorithm can be used for movie recommendations, etc as well)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Sun Jul 28 19:16:35 2019 | |
@author: DASA0 | |
""" | |
# Apriori | |
# Importing the libraries | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
# Data Preprocessing | |
dataset = pd.read_csv('Market_Basket_Optimisation.csv', header = None) | |
transactions = [] | |
for i in range(0, 7501): | |
transactions.append([str(dataset.values[i,j]) for j in range(0, 20)]) | |
# Training Apriori on the dataset | |
from apyori import apriori | |
rules = apriori(transactions, min_support = 0.003, min_confidence = 0.2, min_lift = 3, min_length = 2) | |
# Visualising the results | |
results = list(rules) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
a simple implementation of Apriori algorithm by Python. | |
""" | |
import sys | |
import csv | |
import argparse | |
import json | |
import os | |
from collections import namedtuple | |
from itertools import combinations | |
from itertools import chain | |
################################################################################ | |
# Data structures. | |
################################################################################ | |
class TransactionManager(object): | |
""" | |
Transaction managers. | |
""" | |
def __init__(self, transactions): | |
""" | |
Initialize. | |
Arguments: | |
transactions -- A transaction iterable object | |
(eg. [['A', 'B'], ['B', 'C']]). | |
""" | |
self.__num_transaction = 0 | |
self.__items = [] | |
self.__transaction_index_map = {} | |
for transaction in transactions: | |
self.add_transaction(transaction) | |
def add_transaction(self, transaction): | |
""" | |
Add a transaction. | |
Arguments: | |
transaction -- A transaction as an iterable object (eg. ['A', 'B']). | |
""" | |
for item in transaction: | |
if item not in self.__transaction_index_map: | |
self.__items.append(item) | |
self.__transaction_index_map[item] = set() | |
self.__transaction_index_map[item].add(self.__num_transaction) | |
self.__num_transaction += 1 | |
def calc_support(self, items): | |
""" | |
Returns a support for items. | |
Arguments: | |
items -- Items as an iterable object (eg. ['A', 'B']). | |
""" | |
# Empty items is supported by all transactions. | |
if not items: | |
return 1.0 | |
# Empty transactions supports no items. | |
if not self.num_transaction: | |
return 0.0 | |
# Create the transaction index intersection. | |
sum_indexes = None | |
for item in items: | |
indexes = self.__transaction_index_map.get(item) | |
if indexes is None: | |
# No support for any set that contains a not existing item. | |
return 0.0 | |
if sum_indexes is None: | |
# Assign the indexes on the first time. | |
sum_indexes = indexes | |
else: | |
# Calculate the intersection on not the first time. | |
sum_indexes = sum_indexes.intersection(indexes) | |
# Calculate and return the support. | |
return float(len(sum_indexes)) / self.__num_transaction | |
def initial_candidates(self): | |
""" | |
Returns the initial candidates. | |
""" | |
return [frozenset([item]) for item in self.items] | |
@property | |
def num_transaction(self): | |
""" | |
Returns the number of transactions. | |
""" | |
return self.__num_transaction | |
@property | |
def items(self): | |
""" | |
Returns the item list that the transaction is consisted of. | |
""" | |
return sorted(self.__items) | |
@staticmethod | |
def create(transactions): | |
""" | |
Create the TransactionManager with a transaction instance. | |
If the given instance is a TransactionManager, this returns itself. | |
""" | |
if isinstance(transactions, TransactionManager): | |
return transactions | |
return TransactionManager(transactions) | |
# Ignore name errors because these names are namedtuples. | |
SupportRecord = namedtuple( # pylint: disable=C0103 | |
'SupportRecord', ('items', 'support')) | |
RelationRecord = namedtuple( # pylint: disable=C0103 | |
'RelationRecord', SupportRecord._fields + ('ordered_statistics',)) | |
OrderedStatistic = namedtuple( # pylint: disable=C0103 | |
'OrderedStatistic', ('items_base', 'items_add', 'confidence', 'lift',)) | |
################################################################################ | |
# Inner functions. | |
################################################################################ | |
def create_next_candidates(prev_candidates, length): | |
""" | |
Returns the apriori candidates as a list. | |
Arguments: | |
prev_candidates -- Previous candidates as a list. | |
length -- The lengths of the next candidates. | |
""" | |
# Solve the items. | |
item_set = set() | |
for candidate in prev_candidates: | |
for item in candidate: | |
item_set.add(item) | |
items = sorted(item_set) | |
# Create the temporary candidates. These will be filtered below. | |
tmp_next_candidates = (frozenset(x) for x in combinations(items, length)) | |
# Return all the candidates if the length of the next candidates is 2 | |
# because their subsets are the same as items. | |
if length < 3: | |
return list(tmp_next_candidates) | |
# Filter candidates that all of their subsets are | |
# in the previous candidates. | |
next_candidates = [ | |
candidate for candidate in tmp_next_candidates | |
if all( | |
True if frozenset(x) in prev_candidates else False | |
for x in combinations(candidate, length - 1)) | |
] | |
return next_candidates | |
def gen_support_records(transaction_manager, min_support, **kwargs): | |
""" | |
Returns a generator of support records with given transactions. | |
Arguments: | |
transaction_manager -- Transactions as a TransactionManager instance. | |
min_support -- A minimum support (float). | |
Keyword arguments: | |
max_length -- The maximum length of relations (integer). | |
""" | |
# Parse arguments. | |
max_length = kwargs.get('max_length') | |
# For testing. | |
_create_next_candidates = kwargs.get( | |
'_create_next_candidates', create_next_candidates) | |
# Process. | |
candidates = transaction_manager.initial_candidates() | |
length = 1 | |
while candidates: | |
relations = set() | |
for relation_candidate in candidates: | |
support = transaction_manager.calc_support(relation_candidate) | |
if support < min_support: | |
continue | |
candidate_set = frozenset(relation_candidate) | |
relations.add(candidate_set) | |
yield SupportRecord(candidate_set, support) | |
length += 1 | |
if max_length and length > max_length: | |
break | |
candidates = _create_next_candidates(relations, length) | |
def gen_ordered_statistics(transaction_manager, record): | |
""" | |
Returns a generator of ordered statistics as OrderedStatistic instances. | |
Arguments: | |
transaction_manager -- Transactions as a TransactionManager instance. | |
record -- A support record as a SupportRecord instance. | |
""" | |
items = record.items | |
for combination_set in combinations(sorted(items), len(items) - 1): | |
items_base = frozenset(combination_set) | |
items_add = frozenset(items.difference(items_base)) | |
confidence = ( | |
record.support / transaction_manager.calc_support(items_base)) | |
lift = confidence / transaction_manager.calc_support(items_add) | |
yield OrderedStatistic( | |
frozenset(items_base), frozenset(items_add), confidence, lift) | |
def filter_ordered_statistics(ordered_statistics, **kwargs): | |
""" | |
Filter OrderedStatistic objects. | |
Arguments: | |
ordered_statistics -- A OrderedStatistic iterable object. | |
Keyword arguments: | |
min_confidence -- The minimum confidence of relations (float). | |
min_lift -- The minimum lift of relations (float). | |
""" | |
min_confidence = kwargs.get('min_confidence', 0.0) | |
min_lift = kwargs.get('min_lift', 0.0) | |
for ordered_statistic in ordered_statistics: | |
if ordered_statistic.confidence < min_confidence: | |
continue | |
if ordered_statistic.lift < min_lift: | |
continue | |
yield ordered_statistic | |
################################################################################ | |
# API function. | |
################################################################################ | |
def apriori(transactions, **kwargs): | |
""" | |
Executes Apriori algorithm and returns a RelationRecord generator. | |
Arguments: | |
transactions -- A transaction iterable object | |
(eg. [['A', 'B'], ['B', 'C']]). | |
Keyword arguments: | |
min_support -- The minimum support of relations (float). | |
min_confidence -- The minimum confidence of relations (float). | |
min_lift -- The minimum lift of relations (float). | |
max_length -- The maximum length of the relation (integer). | |
""" | |
# Parse the arguments. | |
min_support = kwargs.get('min_support', 0.1) | |
min_confidence = kwargs.get('min_confidence', 0.0) | |
min_lift = kwargs.get('min_lift', 0.0) | |
max_length = kwargs.get('max_length', None) | |
# Check arguments. | |
if min_support <= 0: | |
raise ValueError('minimum support must be > 0') | |
# For testing. | |
_gen_support_records = kwargs.get( | |
'_gen_support_records', gen_support_records) | |
_gen_ordered_statistics = kwargs.get( | |
'_gen_ordered_statistics', gen_ordered_statistics) | |
_filter_ordered_statistics = kwargs.get( | |
'_filter_ordered_statistics', filter_ordered_statistics) | |
# Calculate supports. | |
transaction_manager = TransactionManager.create(transactions) | |
support_records = _gen_support_records( | |
transaction_manager, min_support, max_length=max_length) | |
# Calculate ordered stats. | |
for support_record in support_records: | |
ordered_statistics = list( | |
_filter_ordered_statistics( | |
_gen_ordered_statistics(transaction_manager, support_record), | |
min_confidence=min_confidence, | |
min_lift=min_lift, | |
) | |
) | |
if not ordered_statistics: | |
continue | |
yield RelationRecord( | |
support_record.items, support_record.support, ordered_statistics) | |
################################################################################ | |
# Application functions. | |
################################################################################ | |
def parse_args(argv): | |
""" | |
Parse commandline arguments. | |
Arguments: | |
argv -- An argument list without the program name. | |
""" | |
output_funcs = { | |
'json': dump_as_json, | |
'tsv': dump_as_two_item_tsv, | |
} | |
default_output_func_key = 'json' | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'-v', '--version', action='version', | |
version='%(prog)s {0}'.format(__version__)) | |
parser.add_argument( | |
'input', metavar='inpath', nargs='*', | |
help='Input transaction file (default: stdin).', | |
type=argparse.FileType('r'), default=[sys.stdin]) | |
parser.add_argument( | |
'-o', '--output', metavar='outpath', | |
help='Output file (default: stdout).', | |
type=argparse.FileType('w'), default=sys.stdout) | |
parser.add_argument( | |
'-l', '--max-length', metavar='int', | |
help='Max length of relations (default: infinite).', | |
type=int, default=None) | |
parser.add_argument( | |
'-s', '--min-support', metavar='float', | |
help='Minimum support ratio (must be > 0, default: 0.1).', | |
type=float, default=0.1) | |
parser.add_argument( | |
'-c', '--min-confidence', metavar='float', | |
help='Minimum confidence (default: 0.5).', | |
type=float, default=0.5) | |
parser.add_argument( | |
'-t', '--min-lift', metavar='float', | |
help='Minimum lift (default: 0.0).', | |
type=float, default=0.0) | |
parser.add_argument( | |
'-d', '--delimiter', metavar='str', | |
help='Delimiter for items of transactions (default: tab).', | |
type=str, default='\t') | |
parser.add_argument( | |
'-f', '--out-format', metavar='str', | |
help='Output format ({0}; default: {1}).'.format( | |
', '.join(output_funcs.keys()), default_output_func_key), | |
type=str, choices=output_funcs.keys(), default=default_output_func_key) | |
args = parser.parse_args(argv) | |
args.output_func = output_funcs[args.out_format] | |
return args | |
def load_transactions(input_file, **kwargs): | |
""" | |
Load transactions and returns a generator for transactions. | |
Arguments: | |
input_file -- An input file. | |
Keyword arguments: | |
delimiter -- The delimiter of the transaction. | |
""" | |
delimiter = kwargs.get('delimiter', '\t') | |
for transaction in csv.reader(input_file, delimiter=delimiter): | |
yield transaction if transaction else [''] | |
def dump_as_json(record, output_file): | |
""" | |
Dump an relation record as a json value. | |
Arguments: | |
record -- A RelationRecord instance to dump. | |
output_file -- A file to output. | |
""" | |
def default_func(value): | |
""" | |
Default conversion for JSON value. | |
""" | |
if isinstance(value, frozenset): | |
return sorted(value) | |
raise TypeError(repr(value) + " is not JSON serializable") | |
converted_record = record._replace( | |
ordered_statistics=[x._asdict() for x in record.ordered_statistics]) | |
json.dump( | |
converted_record._asdict(), output_file, | |
default=default_func, ensure_ascii=False) | |
output_file.write(os.linesep) | |
def dump_as_two_item_tsv(record, output_file): | |
""" | |
Dump a relation record as TSV only for 2 item relations. | |
Arguments: | |
record -- A RelationRecord instance to dump. | |
output_file -- A file to output. | |
""" | |
for ordered_stats in record.ordered_statistics: | |
if len(ordered_stats.items_base) != 1: | |
continue | |
if len(ordered_stats.items_add) != 1: | |
continue | |
output_file.write('{0}\t{1}\t{2:.8f}\t{3:.8f}\t{4:.8f}{5}'.format( | |
list(ordered_stats.items_base)[0], list(ordered_stats.items_add)[0], | |
record.support, ordered_stats.confidence, ordered_stats.lift, | |
os.linesep)) | |
def main(**kwargs): | |
""" | |
Executes Apriori algorithm and print its result. | |
""" | |
# For tests. | |
_parse_args = kwargs.get('_parse_args', parse_args) | |
_load_transactions = kwargs.get('_load_transactions', load_transactions) | |
_apriori = kwargs.get('_apriori', apriori) | |
args = _parse_args(sys.argv[1:]) | |
transactions = _load_transactions( | |
chain(*args.input), delimiter=args.delimiter) | |
result = _apriori( | |
transactions, | |
max_length=args.max_length, | |
min_support=args.min_support, | |
min_confidence=args.min_confidence) | |
for record in result: | |
args.output_func(record, args.output) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Step 1: Apriori Support:
Market basket optimisation: support(I) = (# transactions containing I)/(# transactions)
Step 2: Apriori Confidence:
Market basket optimisation: confidence(l1 -> l2) = (# transactions containing l1 & l2) / (# transactions containing l1)
Step 3: Apriori Lift:
Market basket optimisation: lift(l1 -> l2) = confidence(l1 -> l2) / support(I2)
Apriori Algorithm:
Step 1: Set minimum support and confidence
Step 2: Take all the subsets in transactions having higher support than minimum support
Step 3: Take all the rules of these subsets having higher confidence than minimum confidence
Step 4: Sort the rules by decreasing lift