-
-
Save afaqueumer/bd98d411c9bc5f026b31db22580a9f6f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Import the required libraries | |
import time | |
import numpy as np | |
from PIL import Image | |
from matplotlib import pyplot as plt | |
%matplotlib inline | |
from object_detection.utils import label_map_util | |
from object_detection.utils import visualization_utils as viz_utils | |
import tensorflow as tf | |
import numpy as np | |
%matplotlib inline | |
# Define the paths | |
testing_image_path = os.path.join('Tensorflow' , 'workspace', 'images', 'batman', 'jj.jpg') | |
model_dir = paths["checkpoint_path"] | |
labels_path = files["labelmap"] | |
saved_model_path = os.path.join(model_dir ,"export" , "saved_model") | |
# Load exported model | |
print('Loading model...', end='') | |
start_time = time.time() | |
detect_fn = tf.saved_model.load(saved_model_path) | |
end_time = time.time() | |
elapsed_time = end_time - start_time | |
print('Done! Took {} seconds'.format(elapsed_time)) | |
# Begin Detection | |
category_index = label_map_util.create_category_index_from_labelmap(labels_path, use_display_name=True) | |
image_np = np.array(Image.open(testing_image_path)) | |
input_tensor = tf.convert_to_tensor(image_np) | |
input_tensor = input_tensor[tf.newaxis, ...] | |
detections = detect_fn(input_tensor) | |
num_detections = int(detections.pop('num_detections')) | |
detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()} | |
detections['num_detections'] = num_detections | |
detections['detection_classes'] = detections['detection_classes'].astype(np.int64) | |
image_np_with_detections = image_np.copy() | |
viz_utils.visualize_boxes_and_labels_on_image_array( | |
image_np_with_detections, | |
detections['detection_boxes'], | |
detections['detection_classes'], | |
detections['detection_scores'], | |
category_index, | |
use_normalized_coordinates=True, | |
max_boxes_to_draw=1, | |
min_score_thresh=.2, | |
agnostic_mode=False) | |
# Display the image with detected box | |
plt.imshow(image_np_with_detections) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment