Quick look at MACSIMA data from https://cloud.irc.ugent.be/public/index.php/s/WPRWfQi6MKSF3Ex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
import tifffile | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.backends.backend_pdf import PdfPages | |
from stardist.models import StarDist2D | |
from csbdeep.utils import normalize | |
_dir = Path("HumanLiverH35") | |
files = list( | |
filter(lambda x: not x.name.startswith("."), sorted(_dir.glob("*.ome.tif"))) | |
) | |
_dapi = list() | |
_stack = list() | |
channels = list() | |
for f in tqdm(files): | |
name = f.stem.split("ROI-01_A-")[-1].replace(".ome", "") | |
if name.startswith("DAPI"): | |
_dapi.append(tifffile.imread(f)) | |
else: | |
_stack.append(tifffile.imread(f)) | |
channels.append(name) | |
dapi = np.asarray(_dapi).mean(0) | |
del _dapi | |
# stack = np.asarray(_stack) | |
model = StarDist2D.from_pretrained("2D_versatile_fluo") | |
mask = model.predict_instances(normalize(dapi))[0] | |
fig, ax = plt.subplots() | |
ax.imshow(np.log1p(dapi)) | |
ax.contour(mask, cmap="Reds", linewidths=0.25) | |
ax.axis("off") | |
ax.set(title="DAPI") | |
fig.savefig("mask.pdf") | |
plt.close(fig) | |
with PdfPages("stack.pdf") as pdf: | |
fig, ax = plt.subplots() | |
ax.imshow(np.log1p(dapi)) | |
ax.axis("off") | |
ax.set(title="DAPI") | |
pdf.savefig(fig) | |
plt.close(fig) | |
for channel, image in tqdm(zip(channels, _stack), total=len(channels)): | |
fig, ax = plt.subplots() | |
ax.imshow(np.log1p(image)) | |
ax.axis("off") | |
ax.set(title=channel) | |
pdf.savefig(fig) | |
plt.close(fig) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment