Skip to content

Instantly share code, notes, and snippets.

@amankharwal
Created September 23, 2021 13:02
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
Embed
What would you like to do?
import keras
from matplotlib.pyplot import title
from keras.models import Sequential,Input,Model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU
import tensorflow as tf
from tensorflow import keras
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='linear',input_shape=(28,28,1),padding='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D((2, 2),padding='same'))
model.add(Conv2D(64, (3, 3), activation='linear',padding='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(128, (3, 3), activation='linear',padding='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten())
model.add(Dense(128, activation='linear'))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(500, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment