This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def simplify_ages(df): | |
df.Age = df.Age.fillna(-0.5) | |
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120) | |
group_names = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior'] | |
categories = pd.cut(df.Age, bins, labels=group_names) | |
df.Age = categories | |
return df | |
def simplify_cabins(df): | |
df.Cabin = df.Cabin.fillna('N') | |
df.Cabin = df.Cabin.apply(lambda x: x[0]) | |
return df | |
def simplify_fares(df): | |
df.Fare = df.Fare.fillna(-0.5) | |
bins = (-1, 0, 8, 15, 31, 1000) | |
group_names = ['Unknown', '1_quartile', '2_quartile', '3_quartile', '4_quartile'] | |
categories = pd.cut(df.Fare, bins, labels=group_names) | |
df.Fare = categories | |
return df | |
def format_name(df): | |
df['Lname'] = df.Name.apply(lambda x: x.split(' ')[0]) | |
df['NamePrefix'] = df.Name.apply(lambda x: x.split(' ')[1]) | |
return df | |
def drop_features(df): | |
return df.drop(['Ticket', 'Name', 'Embarked'], axis=1) | |
def transform_features(df): | |
df = simplify_ages(df) | |
df = simplify_cabins(df) | |
df = simplify_fares(df) | |
df = format_name(df) | |
df = drop_features(df) | |
return df | |
data_train = transform_features(data_train) | |
data_test = transform_features(data_test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment