def create_model(max_sequence_len, total_words): | |
input_len = max_sequence_len — 1 | |
model = Sequential() | |
# Add Input Embedding Layer | |
model.add(Embedding(total_words, 10, input_length=input_len)) | |
# Add Hidden Layer 1 — LSTM Layer | |
model.add(LSTM(100)) | |
model.add(Dropout(0.1)) | |
# Add Output Layer | |
model.add(Dense(total_words, activation=’softmax’)) | |
model.compile(loss=’categorical_crossentropy’, optimizer=’adam’) | |
return model | |
model = create_model(max_sequence_len, total_words) | |
model.fit(predictors, label, epochs=20, verbose=5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment