Skip to content

Instantly share code, notes, and snippets.

@apahl
Last active February 12, 2021 13:18
Show Gist options
  • Save apahl/fd521c219e47960da98566938d1ea0fc to your computer and use it in GitHub Desktop.
Save apahl/fd521c219e47960da98566938d1ea0fc to your computer and use it in GitHub Desktop.
Can RDKit's ECFC4 fingerprint distinguish between stereoisomers? TL;DR: no.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "champion-shipping",
"metadata": {},
"source": [
"# Are RDKit's ECFC4 fingerprint stereospecific?\n",
"\n",
"Following an internal discussion, the above question should be answered."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "negative-assessment",
"metadata": {
"execution": {
"iopub.execute_input": "2021-02-12T13:18:17.054550Z",
"iopub.status.busy": "2021-02-12T13:18:17.054271Z",
"iopub.status.idle": "2021-02-12T13:18:17.237104Z",
"shell.execute_reply": "2021-02-12T13:18:17.236704Z",
"shell.execute_reply.started": "2021-02-12T13:18:17.054477Z"
}
},
"outputs": [],
"source": [
"from rdkit.Chem import AllChem as Chem\n",
"from rdkit import DataStructs\n",
"from rdkit.Chem import Draw"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "running-delivery",
"metadata": {
"execution": {
"iopub.execute_input": "2021-02-12T13:18:17.237766Z",
"iopub.status.busy": "2021-02-12T13:18:17.237640Z",
"iopub.status.idle": "2021-02-12T13:18:17.255595Z",
"shell.execute_reply": "2021-02-12T13:18:17.255152Z",
"shell.execute_reply.started": "2021-02-12T13:18:17.237752Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXwUhf3/8U82B0dCOBIgEO5DkEtBCCABFKKohOqvFqu18Vu+Vqy2BhBqUGkjSjUUhMWjihX7CKV8W6C1RlAErBUIEq5WkBhATYQAAgGBBMj9+f2xS0iWTQhkZ2d35/V87B/JzOzOZ5YP887cQaoqAABYlc3sAgAAMBNBCACwNIIQAGBpBCEAwNIIQgCApRGEAABLIwgBAJZGEAIALI0gBABYGkEIALA0ghAAYGkEIQDA0ghCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDSCEABgaQQhAMDSCEIAgKURhAAASyMIAQCWRhACACyNIAQAWBpBCACwtBCzC/BFubm5b7zxRvfu3Tt37nzHHXeYXQ4CBH0FI9BXHqCoprCw8JlnnmncuLGIhIWFicj48eNzcnLMrgv+jb6CEegrTyEInSorK1esWNGpUycRCQoKuvfee1NTU5s3by4ioaGhycnJ33//vdk1wv/QVzACfeVZBKGq6vbt22+++WbHJvLgwYM3b97sGF5QUJCcnBwcHCwirVq1stvt5eXl5pYKP0JfwQj0lcdZPQgPHz48efJkm80mIu3bt1+8eHFFRYXLNLt27Ro1apSj7W688cZ///vfppQKP0JfwQj0lUGsG4QlJSV2u71Zs2aO3evJyclnzpypY/qMjIyuXbs62isxMfGbb77xWqnwI/QVjEBfGcqiQZiRkdGtW7eqLvn666/r867z58+npaVV78WzZ88aXSr8CH0FI9BXRrNcEGZnZ48bN87RUtdff/2HH354tZ9w+PDhpKSkoKCgOvZOwGroKxiBvvIOCwXhyZMnPXgkedu2bcOHD3c06JAhQzIzMz1YKvwIfQUj0FfeZIkgLC0tX7hwYYsWLRznFk+ZMuXUqVMN/1jHGcwdO3Z0nME8ceLEb7/9tuEfC39BX8EI9JX3BX4Qrl+v/frpDTeMFpGxY8fu2bPHs59fVFSUmprquKY1PDw8NTX1woULnp0FfBB9BSPQV6YI5CDMydHx41VERTQhYffq1auNm9fBgweTkpIcex46duyYnp5u3LxgLvoKRqCvTBSYQVhYqKmp2qiRimhEhKamanGxN+b7r3/9a8CAAY72uvXWWz///HNvzBXeQl/BCPSV6QItCCsqND1d27ZVEbXZNClJv/vOywVUpKent27dWkRsNltSUtKxY8e8WgEMQF/BCPSVjwioINy6VYcOde5bGDpUt241rZJTp06lpKQ4boPbsmXLtLS0kpIS06pBw9BXMAJ95TsCJAgPHdKkJA0KUhHt0EHT07Wy0uyaVHNycu666y7HnodevXqtWbPG7IpwdegrGIG+8jV+H4TnzmlamkZEqIg2baopKVpYaHZNNa1fv75Pnz6O9kpISNi7d6/ZFeHK6CsYgb7yTSYEYWqqvvqqm+HvvaczZ+p33+kXX2hKir74outfSQcPakqKrlvn/LWyUles0M6dnfsWEhM1L8/w4q9NaWmp3W6v/pCU06dPm11UoKGv6Csj0FdW6CsTgjA8XAcNcjP88cdVRPfs0XffdfaKyzm9W7eqiKamqqru2KHx8c7JBg3STZu8UHhDVX9ISlRUFA9J8Sz6ir4yAn1lhb6yia8KDZUZM+TUKTejZs2SuDjZvFliYuSdd2T7domP93p9Vy8qKmrRokXbtm0bOXLkyZMnp06dGhcXt2nTJrPrshb6Ckagr/ya7wbho49KQYGkpLgZNXCgBAdLcrLs2yeTJonNdxfCjUGDBm3cuDEjI6NLly6OJ4dNmDAhLy/P7Lqsgr6CEegrv+a7/yaDB8sDD8iSJbJ5s+uoe++Vr7+WRYskMtKMyjxhwoQJ2dnZaWlpERERq1ev7tOnz8yZM4uKisyuK/DRVzACfeXXzAlCVSkpcX1VVrpO9vvfS9Om8thjUlbmOqpjR+9UaqAmTZqkpKTk5OQkJSUVFxfPnTu3d+/eS5cuVVWzS/NX9JXQVwagryTQ+8qcIPzPf6RxY9fXm2+6ThYbK7NmyRdfyIIFZlTpFbGxsUuXLt24ceOgQYMOHz48ffr048ePm12Uv6KvqtBXHkRfVQnUvgoxZa4dOsiMGa4DV61ys1fhySdl6VJ5/nn5yU+8U5o54uPjt2/fPmPGjIULFyYlJa1bt87sivwSfeWCvvII+spF4PWVOUHYpo1MmeI6cP9+N40VFiZvvim33CIpKW7eEkhsNtsdd9yxcOFCswvxY/TV5eirhqOvLhdgfWVOEF6VUaPkJz+R5cslLs7sUhBA6CsYgb7yR7571mh18+dLZKTMmWN2HQgs9BWMQF/5Hf8IwpgYef55OXnS7DoQWOgrGIG+8jv+EYQi8stfysCBZheBgENfwQj0lX8x4Rih3S4tWrgZfv/90q+ftG8vERGyeLEMH15jbHCw/OUvsmmT3HSTd8qEn6GvYAT6ygqCfPxyyD17ZP16GTBAEhLMLsV469atGzdu3G233RYApyP7OPoKRqCv/JSv7xrdskWmT5eVK82uA4GFvoIR6Cs/5etBCACAoQhCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDSCEABgaQQhAMDSCEIAgKURhAAASyMIAQCWRhACACyNIAQAWBpBCACwNIIQAGBpBCEAwNJCzC7gCsLD80aOPNe2bbBIb7NrQeCgr2AE+spP+foW4blzH23a1O/YsYVmF4KAQl/BCPSVn/L1IAQAwFAEIQDA0ghCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDSCEABgaQQhAMDSCEIAgKURhAAAS/PdIDx37pzZJSAA0VcwAn3l13wxCMvLy996662uXbtu3rzZ7FoQOOgrGIG+CgA+F4Rr167t37//o48+euLEiffee8/schAg6CsYgb4KDD4UhAcOHLjvvvvuvPPOnJycnj17rlixYt68eWYXBb9HX8EI9FUg8Ykn1BcVFc2fPz8tLa2kpCQiImL69OlPP/10o0aNqiYoLS01sTyvUVURKS8vN7uQAEFfOTj6qri42OxCAgR95RBQfaWmqqioSE9Pb9u2rYjYbLakpKTvvvuu+gSffPLJ6NGjw8PDHW1nVp1esHXr1gEDBsTGxoaFhaWkpJw9e9bsivwYfVXF0VetW7cOCgoaP3782rVrKysrzS7KX9FXVQKsr8wMwq1btw4dOtSRx0OHDv3ss8/cTvbwww87punTp89HH33k5SK9IC8v77777nMsY4sWLYKCgkSkY8eOy5cv9+veMgt95VC9ryIiIqr+9u3Vq9crr7xy5swZswv0M/SVQ0D2lTlBeOjQoaSkJMcav0OHDunp6XWv8devX9+nTx/H152QkLB3716vlWqoc+fOpaWlOZqpadOmKSkphYWFWVlZw4cPdyzskCFDtmzZYnaZfoO+cri8r86ePWu320NDQ6tWW82aNZs8efIXX3xhdrF+gL5yCOC+8nYQul31X/FdlZWV+fn5dru9efPmIhIaGpqcnHz69GkvFGyQysrKFStWdO7c2dE9iYmJeXl51cemp6fHxMSISFBQUFJS0tGjR02s1vfRVw5191VWVlaXLl1cDo6MGDFixYoV5eXlJpbts+grh4DvK68GYUZGRvWvMjc3tz7v2rlzZ3x8fN++fcvKygoKCpKTk4ODg0UkKirKbrf7yxdd3Y4dO+Lj4x3fw6BBgzZt2uR2sqKiotTU1MaNG4tIeHh4amrqhQsXvFyqX6CvHOrTVydOnLjzzjvlMt26dZs/f/7333/v/bJ9Fn3lYIW+8lYQbt+edf/9jq9m8ODBmzdvrs+bjh49OmnSJJvNJiIxMTE5OTmO4Tt37hw5cmTVP8zGjRuNLN2Tjhw5MnnyZMd/jOjo6Pr8xzhw4MDEiRMdC9ujR48VK1Z4p1T/QF+p6lX2VWVlpcvurCqNGzdOSkr6/PPPvVm8L6KvVNVKfWV8EB45opMmqc2mIo/fccc777xTUVFxxTeVlpba7fbIyEi5uGPh8mOwGRkZVdvj9f97zSz1WaI6fPzxx/3793cs7JgxY3y5pbyEvlLVBvSV291ZVRz7tcrKyoyu3+fQV6pqvb4yMghLS9Vu18hIFdHQUE1O1vp9lRkZGd27d3d8cQkJCdnZ2bVNef78+ao9+E2aNKnnHnzvq75EiYmJX3311TV8SFlZ2eLFi1u3bi0iISEhkydPPn78uMdL9QP01UUN7Kvjx4+PGzeutnXWHJHc6Gh96SU9ccKg+n0LfXWRBfvKsCDMyNDu3VVERTQhQWtvjupycnKqdjT36tVrzZo19XlXfn5+1TldsbGxVzyny5u+/PLL6kv0wQcfNPADT506lZycHBISIiItW7YM+MuVXNFXquq5vqqoqPjd737naKfq/p/jG3a8GjfW//1f3bXLs4vgW+grVbVwXxkQhF9+qXfe6VzUXr20fs3R8PV7VlbWsGHDHF93XFxcbVf5eI3LEtntdg/uENizZ09CQoJjYY/cfbeuX++pT/Zd9JWqGtNXn376afv27avWVo1Evq6+wqp6jRihf/2rlpZ6ZEF8BX2lqpbvK48G4alTmpysISEqoi1bqt2u9fgqPbjHz0euOvDaPsx33333rR/8wNlMd9+tBw4YMRfz0VeqanBfHTt27Pbbb3essJ5xu7aqesXEaEqKHjrkqVmbhr5SVfpKVT0WhGVlunixtm6tIhoSopMna/2+SiPOAXFcdeC49Z/jqoPi4uKGf2w9uSzR7t27jZ3ftR7Y8A/01UVe6KuKiooXXnghJDj4ZN0rLMerUSP96U81K8vjZXgDfXURfeXgiSD8+GPt39+5GGPGaP2+SqOvCvD+VQdmXudw4oQmJ2twsIpodLTa7eqHlyu5oq/MmOMnn3yS16zZlVdYVa+4OP3zn9WL6+6Goq/MmKOP91XDgvDAAZ040Vl3jx5az6/yzBl96qlJo0aJSLNmzebOnWvcX0AbNmzwwvbZ5X/TmXPl+86dGh/v/OcYNEj953IlV/SVqprYV999pyNHXsU6S0SjojQlRb/91hvlXTP6SlXpK3caEITp6RoWpiIaGalz59YruisqdMkSjYlRkcMxMY8+8ogX9okbugfcR/by15CRoZ07O9soMVF9+3IlN+grX+irigqdPdu5j6H+r6AgHTbMq3XWH31FX9WuAUF44IA2bqxJSVrPr3LbNh0+3LlgQ4aod+8lffLkSY+fE1X9vC/fujv2uXOalqYRESqiTZtqSor65OVK7tFXvtNXH3/siIGre/nmPabpK/qqdlcThBcu6PnzNYYcOVKvN+bna1KSBgWpiMbGanq6mnTdTPWrZHr37n3NV8n48pVAlxw6VN+vvbxcTXz8IX11kS/21dGjOmbMVaytmjXTqkf00VcNQ195ra/qEYTffKM//7m2bessKDpaH3pI9+2r18efP39p06RJE01JMfM/xkUNuW/C5feG8PUn6G7dqkOHOv/t4uK0+uVKZ8/q7Nnau7dzbJMmevvtWv0Jajt3aqtW+txzbj522DDt3btBhdFX1fh0X1VWalpafXdnzZ9PX3kWfeWFvrpSEGZmavPmGhKiDzygixbpK69oUpKGhmp4uK5bd4X3ZmRoly7OohMT9ZtvrjC9F13bnfT8626Bl1RU6FtvaZs2KqI2m776qqrq8ePOc+dGjtS0NP3DH3TaNOcJ5S+84Hzj1q0qor/+tZvP7NVL27S59pLoq2r8o6/+9S9t1+4Ka6vu3TU/n77yOPrK6L6qMwjPnNHYWA0Pd90/vn27RkZqdHStN4vbtUtHjXIuw8CB+umndc3FPI57qzvuFt+uXbvFixfXdm/16vePHzhw4Ke+ukR1KSzU1FQND9c9e1RV77lHRfTll2tMU1CgN9ygQUHOW9UYtMKiry7ys746dkxvu62uFdb779NXxqGvjOurOoPwtddq5G118+eriL70kuvwgoJLF7RFRfnFBW07duwYMWKEo2luuukml6dtBcYTxS45eVJVNTtbg4J09Gg3E+zapSKakKBq2AqLvvLfviov19RU97uzHLfopK8MRl/V4KG+qjMIJ0xQEfc37jp6VEX0llsuDXHc4qR5c5WLtzjxnycyV3/+clBQ0MSJE/Py8hy7IwLmGdM12O0qom++6X5s374aFqYXLhi1wqKv/L2v1q1z7mmveoWGanY2feUd9FUNnuirOoOwVy9t1KjWM6aiorR9e+fP5eU6YMCl3ev1PDTtY4qKimbNmuV4InzTpk0dV9s4dq/v37/f7Oo86vHHVaTWK+7vu09FNDvb2Vhjx+orr7i+2rS59hUWfRUAfXX4sI4efWmFlZysSl95FX3l5Im+qjMIY2O1Vatax3bpohERl36dNUuvu05Xr67rA/3BoUOHkpKSbDZbdHR09+7dV/v/Ernx0EMqUusDUB5+WEU0K8vZWLW9rnmFZe2+ioyM7Nq1ayD0VVmZPvOM2mzataueOqVKX5nA0VchISF9+vS57rrr6Ktr66sGbBFGR2u7dpd+vXAhkJ7P4jhf2fBbZpvF8RdWzaMLl7j8hTVtmp475/q67jqj/nIP3L6qrKx0/P2ekZFhdi2e8/33l36mr0zy9ddfHzx4sDSAlsjLfWWTOnTvLiUlkpfnZtSJE1JQID17XhrSuLGEhtb1aX4lNDRURC5/sGSAcFyWlJPjfmxOjoSGysUTryUkRJo2dX0FBTVo7pbsq+PHjxcXF4vI4cOHza7Fc1q0uPQzfWWSbt26dezYMTSAlsjLfVVnEI4dKyLyj3+4GbVqlYjIbbfV/enwUXX8y+7bJ3v2yIgR0qSJCXMP6L769ttvXX4INPQVjGB8X9UZhD/7mURFyYsvyv79NYbn5srs2dK8uTzySEPmDdPccIOMHSsffih//WuN4cXF8thjoiozZhg4d6v2VeAHIX0FIxjfV3Xu+mvVStLT5d57JS5OfvlLGT5cgoJk+3Z59VUpLJTly6Vt2wbOHqZZskRGjZIHH5QPP5QJEyQyUvbvlzfekOxseeIJGT/ewFlbta8OHjzo8kMAoq9gBKP76soHLbdt07FjL13qGByso0drZuZVHfj0O7179xaR7Oxsswsx0pEjOmmS886Kjtd11+k771yawLhbYakV++qJJ55w/Kfr0KGD2bUYib7yutdee+3BBx80uwqDGdlXQapar8A8c0by80VVYmOlZcuGxq/Pu/7663NycrKzs6+//nqzazFYaank5sr58xITI+3auY4tLxebTWyX7UKvqBARCQ5u6Nyt1Fd33313RkaGiNhstgsXLoSFhZldkZHoKy/avXv30aNHx40bZ3YhxjOmr+odhBZjoSCEtwwcOPC///2v4+evv/66W7du5tYDwKHOk2UAeE71c2QC+TAh4G8IQsAbCgsLv//++6pfA/bEUcAPEYSAN7gkH1uEgO8I0DunAD7GJQjZIoSn5ObmZmZmikinTp1GjRpldjl+iSAEvMFlE5AghKccOXJk7dq1IjJ48GCC8NoQhIA3sEUIg4wYMaLqUb24NhwjBLzBZYvw4MGDXLkE+AiCEPAGl03AkpKS48ePm1UMgOoIQsAbLt8Xyt5RwEdwjBAwXFlZWYujR5+oNuRrkby8vLi4ONNqQqAoKSmp+jkkJCS44Teosx6C0L0/DRigbdvG0FLwhPK8vCzV8JoDc7Ztk/vuM6cgBIqDBw/2rPbA4Xnz5iUnJ5tYj58iCN0btnu35OQ4b9UKNEyTw4flslNjelf7Qx64Np06dSqhkRqMY4SA8dweDuTmMoBvIAgB47kNQk6WAXwDQQgYz+3GH0EI+AaCEDCe28w7fVrOnvV6KQBccbIMYLzaNv4OHpR+/bxbCgLLww/LiRM1hixYID16mFSNvyIIAYOpyqFD7kd9+y1BiAZ54AE5f77GkOhok0rxYwQhYLBjx6S42P0oDhOigRISzK4gEHCMEDBYHWlHEAI+gCAEDEYQAr6NIAQMVseF81xTD/gAjhECBmOLEAbJzJTcXNeBwcHywANmVOPHCELAYHWk3XffSUmJNGrkxWoQQHbvlsxM14FhYQTh1SIIAYPVEYSVlZKfL927e7EaBJDHHpPHHjO7iEDAMULAYHUfCGTvKGA2ghAw0tmzcvp0XRNwvgxgNoIQMNIVN/j27vVKHQBqxTFCwEhXDMKNG71SBwJOZaWUlbkfZbNJaKh3q/FvBGEtnnxSCgqkTRuz64Cfi4qS4GCpqKh1gptu8mI1CCBLlsivfuV+VEKCrFnj3Wr8W5Cqml2Dj1GV3bvlwAEpKZH27WXYMGnS5NLYEyckJ0d69JB27VzfmJkpERFyww3eLBZ+4IMPZM8eUZXvvpOCAikvl8hI6dRJQkOlWTN57DEJCqKvcI1YX3mEorrVq7V7dxW59AoP19/+VsvLnRMsX64i+oc/uHlvaKgOG+bNYuE36CsYgb7yEE6WqWblSrn7bikpkbfflq++kvx8WbtWBg+W55+Xhx4yuzj4LfoKRqCvPIdjhBedPSuTJ0uLFrJli3Ts6BwYGytjx8pdd8ny5fLjH8sPfmBqifBD9BWMQF95FFuEF/3tb3L6tEybdqmrHEJC5OWXRUQWLzalLvg3+gpGoK88iiC8yHHLvttvdzOqf3+JjZXMTOHEIlwt+gpGoK88il2jF+Xni4h06eJ+bJcukpkphYXOXxctklWrXKcpLzeqNvgv+gpGoK88iiC8yHFpakgtX0hYmIhIaanzV5ut1imB6ugrGIG+8ii+nYtatRIROXlSWrZ0M7agQIKDpUUL569PPOHmpu+O5gOqo69gBPrKozhGeNGAASIiO3e6GVVYKPv2Sb9+/FWFq0ZfwQj0lUcRhBfdc4+IyNtvuxn1pz9Jaan88IdergiBgL6CEegrjyIILxo4UH70I9mwQX7zmxqHkdevl2eflXbtar2tH1AH+gpGoK88im3nav74Rzl2TObMkWXLZPRoadxY9uyRzz6T6Gj55z+dO+WBq0VfwQj0leewRVhNixbyySeydKn07y9ZWbJ+vQQHy+zZkpMjcXHOaWJjJTHR/VnLiYkSH+/FcuEn6CsYgb7yHJ4+AQCwNLYIAQCWRhACACyNIAQAWBpBCACwNIIQAGBpBCEAwNIIQgCApRGEAABLIwgBAJZGEAIALI0gBABYGkEIALA0ghAAYGkEIQDA0ghCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDSCEABgaQQhAMDSCEIAgKURhAAASyMIAQCWRhACACyNIAQAWBpBCACwNIIQAGBpBCEAwNIIQgCApRGEAABLIwgBAJZGEAIALI0gBABYGkEIALA0ghAAYGkEIQDA0ghCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDSCEABgaQQhAMDSCEIAgKURhAAASyMIAQCWRhACACyNIAQAWBpBCACwNIIQAGBpBCEAwNJCzC7AF+Xm5r7xxhvdu3fv3LnzHXfcYXY5AAADEYQ1FBUVvfTSSwsWLCguLg4LCystLR0/fvzLL7/cq1cvs0sDABiCXaNOqrpy5cq+ffu++OKLJSUl995779NPP928efM1a9b0799/ypQpp0+fNrtGAIDnBamq2TWYb8eOHVOmTNmyZYuIDB482G63jxgxQkROnjz5/PPPv/766xUVFa1atfrtb3/7q1/9Kjg42Ox6AQAeY/UgPHLkyOzZs99+++3Kysr27dunpqb+/Oc/t9lqbCj/5z//mTp16saNG0XkxhtvtNvto0ePNqleAICHWTcIS0tL33jjjd/85jeFhYVhYWG/+MUvXnjhhcjIyNqmf//996dMmZKbmysiiYmJr7zySteuXb1YLwDAEBYNwvfff3/q1KnffPONiCQmJi5atKhbt25XfNeFCxdeeeWV3/3ud1XZOWfOnGbNmhlfLwDAKJYLwi+//HLatGkfffSRiFx//fULFiy42gskjhw5MnPmzGXLlqlqbXtTAQD+wkJBeOrUqdmzZ3vqzJft27dPmTLls88+E5EhQ4bY7fabb77Zo/UCALzBEkFYVlbx+uuvzp49+/Tp06GhoY8//nhqamrLli0b+LGqumrVqunTpx86dCgoKOhHP/rR/PnzO3Xq5JGaAQDeEfhBuGGDTJsmwcG3fP75p2PHjrXb7f369fPg5587d27evHlz584tLi4ODw+fMWPGzJkzGzdu7MFZAACME8hBuG+fTJ8ua9aIiCQk7Jk69eD48eMNmtehQ4eeffbZP//5zyLSsWPHOXPmPPTQQwbNCwDgQYEZhEVFMn++pKVJSYlERMj06fL009KokeHz/eSTT6ZOnbp7924RufXWW+12+4ABAwyfKwCgAQItCCsrZdkyeeopOXZMbDZ58EGZN0/atvVmAZXLli2bMWPGiRMnbDbbgw8+OH/+/DZt2nivAgDA1QioIMzKkilTJCtLRGToUFm0SIYONaeS77//fu7cuQsXLiwtLW3ZsmVKSsq0adPCwsLMqQYAULsACcL8fHnmGVm2TFSlQwf53e8kKUmCgkyuat++fU8++eQHH3wgIr169VqwYMFdd91lck0AgJr8PgjPn5dXX5U5c6SoSJo2lSeekFmzJCLC7LKq2bBhw5QpU7Kzs0UkISFh0aJFffr0MbsoAICTCfdDee45ee01N8MzMuTpp+XYMdm7V2bOlJdeEpeMPnRIZs6U9eudv6rKypXSp4/MnClFRZKYKNnZkpbmWykoIgkJCf/973/tdnvz5s03bNhw4403Tpky5cyZM2bXBQAQERH1uvBwHTTIzfDHH1cR3bNH331XRVRE09NrTLB1q4poaqqq6o4dGh/vnGzQIN20yQuFN1RBQUFycrLjXjZRUVF2u728vNzsogDA6nz3DpmhoTJjhpw65WbUrFkSFyebN0tMjLzzjmzfLvHxXq/v6kVFRS1atGjbtm0jR448efLk1KlT4+LiNm3aZHZdAB1PE5QAABEcSURBVGBpvhuEjz4qBQWSkuJm1MCBEhwsycmyb59MmiT+db/rQYMGbdy4MSMjo0uXLrt27Ro1atSECRPy8vLMrgsALMp3M2TwYHngAVmyRDZvdh11773y9deyaJHU/vRAXzdhwoTs7Oy0tLSIiIjVq1f36dNn5syZRUVFZtcFAJZjThCqSkmJ66uy0nWy3/9emjaVxx6TsjLXUR07eqdSAzVp0iQlJSUnJycpKam4uHju3Lm9e/deunSp+vl5vADgX8wJwv/8Rxo3dn29+abrZLGxMmuWfPGFLFhgRpVeERsbu3Tp0o0bNw4aNOjw4cPTp08/fvy42UUBgIWEmDLXDh1kxgzXgatWudkL+uSTsnSpPP+8/OQn3inNHPHx8du3b58xY8bChQuTkpLWrVtndkUAYBXmBGGbNjJliuvA/fvdBGFYmLz5ptxyi6SkuHlLILHZbHfcccfChQvNLgQArMWcILwqo0bJT34iy5dLXJzZpQAAAo7vnjVa3fz5Ehkpc+aYXQcAIOD4RxDGxMjzz8vJk2bXAQAIOP4RhCLyy1/KwIFmFwEACDgmHCO026VFCzfD779f+vWT9u0lIkIWL5bhw2uMDQ6Wv/xFNm2Sm27yTpkAAEvw9ccw7dkj69fLgAGSkGB2KcZbt27duHHjbrvtNi6fAACv8fVdo1u2yPTpsnKl2XUAAAKUrwchAACGIggBAJZGEAIALI0gBABYGkEIALA0ghAAYGkEIQDA0ghCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDSCEABgaQQhAMDSCEIAgKURhAAASwsxu4ArCA/PGznyXNu2wSK9za4FABCAfH2L8Ny5jzZt6nfs2EKzCwEABCZfD0IAAAxFEAIALI0gBABYGkEIALA0ghAAYGkEIQDA0ghCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDTfDcJz586ZXQIAIPD5YhCWl5e/9dZbXbt23bx5s9m1AAACnM8F4dq1a/v37//oo4+eOHHivffeM7scAECA86EgPHDgwH333XfnnXfm5OT07NlzxYoV8+bNM7soAECA84kn1BcVFc2fPz8tLa2kpCQiImL69OlPP/10o0aNqiYoLS01sTyvUVWzSwAAyzE5CCsrK5ctW/bUU08dO3bMZrMlJSXNmzevbdu2VRP06tVr9OjRK1eu7N2797Rp08LCwkys1lBZWVlPPfVU165db7/9drNrAQALMXPXaFZW1s033/w///M/x44dGzp0aGZm5tKlS6unoIjccsstPXr0OHfu3MyZMwcOHLhu3TqzqjXOt99+++Mf/3jYsGG7d++urKx85JFHzK4IAKxEzXDo0KGkpKSgoCAR6dChQ3p6emVlZR3Tr1+/vk+fPo6CExIS9u7d67VSDXXu3Lm0tLSIiAgRadq0aUpKSmFhocs0xcXFptQGABbh7SCsz6r/cpWVlfn5+Xa7vXnz5iISGhqanJx8+vRpLxRskMrKyhUrVnTu3NmR7omJiXl5eZdPtmbNmttuu8375QGAdXg1CDMyMqqv+nNzc+vzrp07d8bHx/ft27esrKygoCA5OTk4OFhEoqKi7HZ7eXm5wVV73o4dO+Lj4x3fw6BBgzZt2lTblJs2bfr3v//tzdoAwGq8FYTbt2fdf79j1T948ODNmzfX501Hjx6dNGmSzWYTkZiYmJycHMfwnTt3jhw5sipINm7caGTpnnTkyJHJkyc7gjw6OvoagjwrK2v16tUGlQcAFmR8EB45opMmqc2mIo/fccc777xTUVFxxTeVlpba7fbIyMiqHaFnzpxxmSYjI6NLly5Xu31plvos0RVVVFQMGTJk+fLlRlQIANZkZBCWlqrdrpGRKqKhoZqcrPVb9WdkZHTv3r3q1Jjs7Ozapjx//nzVEccmTZrU84ij91VfosTExK+++uraPudPf/rTzTff7HJi0TUEKgCgimFBmJGh3buriIpoQoLWHmbV5eTk3HnnnY7A6NWr15o1a+rzrvz8/KpzUGNjY694Dqo3ffnll9WX6IMPPmjIpx07dmz//v0uA8eMGbNq1aqGfCwAWJkBQfjll3rnnc4I7NVL6xdmp06dSk5ODgkJEZGWLVs67jJzVbPNysoaNmyYI3Li4uI+++yza6reY1yWyG63l5WVeXwuf//73/v06WPEJwOARXg0CE+d0uRkDQlREW3ZUu12rccKuqysbPHixa1btxaRkJCQyZMnHz9+/NrmX1lZmZ6eHhMTIyJBQUFJSUlHjx69to9qCA8uUd1KSkp69uz50UcfuY544QU9fNiIOQJA4PFQEJaV6eLF2rq1imhIiE6erPVb9X/88cf9+/d3bMaNGTPm888/b3gtRUVFqampjluVhoeHp6amevOadJcl2r17t3Hzevvtt++55x7Xof/6l3btqhcuGDdfAAgkngjCjz/W/v2d+0LHjNH6rfoPHDgwceJER2D06NFjxYoVHqjEi5/vC3OsrKx0PVOmvFwHDNC//9110iNHjC4GAPxUw4LwwAGdONEZgT16aD1X/WfO6FNPTRo1SkSaNWs2d+5c47bYNmzY4IXts8u3QS+YtUH2hz/orbe6Dty5Uzt21NJSMwoCAF/XgCBMT9ewMBXRyEidO1frE2YVFbpkicbEqMjhmJhHH3nEC8fwDD1i5yNHJZ1OndKYGL189/KoUbpkiRkFAYAfaEAQHjigjRtrUpLWc9W/bZsOH+7cfBwyRLdsufZZX72TJ096/BzO6uepDhkyZIt3l8iNd9/VJ55wHbh8uQ4cqC43Mdi3T2fN8lpdAODLriYIL1zQ8+drDKnnkaf8fE1K0qAgFdHYWE1PV5Ou86t+VV/v3r2v+ao+X75ysYbz57VzZ/30U9fh48fr/PmXfi0v17NnvVkXAPiOegThN9/oz3+ubds6N+aio/Whh3Tfvnp9/PnzmpamEREqok2aaEqKL6xwG3Kfl8vvZXPWB5aoVqmpev/9rgPXr9cePbS4WM+e1dmztXdv579skyZ6++1a/WKMnTu1VSt97jk3nzxsmPbubWDlAOAtVwrCzExt3lxDQvSBB3TRIn3lFU1K0tBQDQ/Xdeuu8N6MDO3SxbmSTUzUb77xVNENd213/vSvu5vqoUMaHa0uT3cqK9O+fXX1aj1+3Hmu78iRmpamf/iDTpvmvADmhRecE2/dqiL661+7+fBevbRNG8MXAQCMV2cQnjmjsbEaHu56PG/7do2M1OhoPXHC/Rt37dJRo5wROHCgm11zvsHxLAjH0y3atWu3ePHi2p4FUf15FwMHDvzUV5eohi1b9LXXXAcuXKgJCaqq99yjIvryyzXGFhToDTdoUJCuX69KEAKwhDqD8LXXamwfVDd/voroSy+5Di8o0ORkDQ5WEY2KUrtdff55gTt27BgxYoQj5G666SaXpwMGxhMQnU6e1DZtdM8ezc7WoCAdPdrNNLt2OW8PqwQhAEuoMwgnTFARPXDAzaijR1VEb7nl0hDHsyaaN7/0rAn/eYJ89efFBwUFTZw4MS8vz7H7tHnz5lW7T0/7zxK594tf6NSpqqp2u4rom2+6n6xvXw0L0wsXCEIAVhAiddi/Xxo1kovnldQQEyNRUbJ/v/PXigoZPFh273YcPZOXX5brrqvrk32MI/zuuuuutLS0+fPnr1y5cs2aNZGRkd99952IJCYmLliwoGfPnmaX2TB798o//iHZ2SLi/Ifr08f9lH37yt69kpvr/HXXLnn1Vddpvv/eoDIBwMvqDMKiIgkPl6Ag92ObNZOCAufPwcHygx9IcbEsWCDjx3u4Rm8JDw9/4YUXHn300Weeeeb//u//WrVqFRkZuWDBgvF+u0Q1NGsmf/6zREWJiBQViYhERNQ6pYgUFjp//fhj+fhjN5O1aeP5IgHA6+oMwogIKSgQVfdZWFTkXGM6PPus/Pa3Ehrq4QK9rkOHDkuXLn3uuedCQ0NjYmJC/X+JnDp1kk6dnD87IvDcOfdTOiKwWTM5e1ZEZNo0mTPHdZqBA+X0aUPqBADvstU1snt3KSmRvDw3o06ckIICqb63sHHjAEjBKt26devYsWPgpKALx+7unBz3Y3NyJDRULl4oIiEh0rSp66u2/QQA4G/qDMKxY0VE/vEPN6NWrRIRue02A0qC8er4l923T/bskREjpEkTLxcFAKaoMwh/9jOJipIXX7x0UoxDbq7Mni3Nm8sjjxhaHIxyww0ydqx8+KH89a81hhcXy2OPiarMmGFSZQDgbXUeI2zVStLT5d57JS5OfvlLGT5cgoJk+3Z59VUpLJTly6VtW2/VCU9bskRGjZIHH5QPP5QJEyQyUvbvlzfekOxseeIJ/z3jCQCuVp1BKCLjx8umTfL00zJ3rlRUiIgEB0t8vLz4otx8sxfqM8vrr7/+2WefLVu2zOxCDNO5s2zdKs8+KytXytKlzoHXXSfvvCOTJplaGQB4VZCq1mvCM2ckP19UJTZWWrY0uCrz7d69++jRo+PGjTO7EOOVlkpurpw/LzEx0q6d69jycrHZxHbZLvSqv4oAwM/VOwgBAAhEdZ4sAwBAoCMIAQCWRhACACztSmeNWlJubm5mZqaIdOrUadSoUWaXAwAwEEHoxpEjR9auXSsigwcPJggBILBx1igAwNI4RggAsDSCEABgaQQhAMDSOFnGjZKSkqqfQ0JCgrmRGAAELrYIXR08eDCymtdff93sigAABuKsUQCApbFFCACwNIIQAGBpBCEAwNIIQgCApXH5xGUeflhOnKgxZMEC6dHDpGoAAMYiCC/zwANy/nyNIdHRJpUCADAcl08AACyNY4QAAEsjCAEAlkYQAgAsjZNlasrMlNxc14HBwfLAA2ZUAwAwHEFY0+7dkpnpOjAsjCAEgEDFWaMAAEvjGCEAwNIIQgCApRGEAABL42SZaiorpazM/SibTUJDvVsNAMAb2CKsZskSiYx0/7rnHrOLAwAYgrNGL6Mqu3fLgQNSUiLt28uwYdKkyaWxJ05ITo706CHt2rm+MTNTIiLkhhu8WSwAoIHYIqxpzRrp2VNuvFEmTpSf/lTGjJHWrSU1VSoqnBNs2CCjRsk//+nmvbfeKr/4hTeLBQA0HEFYzcqVcvfdUlIib78tX30l+fmydq0MHizPPy8PPWR2cQAAQ3CyzEVnz8rkydKihWzZIh07OgfGxsrYsXLXXbJ8ufz4x/KDH5haIgDA89givOhvf5PTp2XatEsp6BASIi+/LCKyeLEpdQEADEUQXuS4xejtt7sZ1b+/xMZKZqZwYhEABBx2jV6Uny8i0qWL+7FdukhmphQWOn9dtEhWrXKdprzcqNoAAIYhCC9yXEofUssXEhYmIlJa6vzVZqt1SgCAX2FtflGrViIiJ09Ky5ZuxhYUSHCwtGjh/PWJJ+Sxx1yncYQlAMCvcIzwogEDRER27nQzqrBQ9u2Tfv3YCgSAwEMQXuS4idrbb7sZ9ac/SWmp/PCHXq4IAOAFBOFFAwfKj34kGzbIb35T47SX9evl2WelXTv51a/MKw4AYBT29VXzxz/KsWMyZ44sWyajR0vjxrJnj3z2mURHyz//6TyICAAILGwRVtOihXzyiSxdKv37S1aWrF8vwcEye7bk5EhcnHOa2FhJTHR/lUViosTHe7FcAIAH8PQJAIClsUUIALA0ghAAYGkEIQDA0ghCAIClEYQAAEsjCAEAlkYQAgAsjSAEAFgaQQgAsDSCEABgaQQhAMDSCEIAgKURhAAASyMIAQCWRhACACyNIAQAWBpBCACwNIIQAGBpBCEAwNIIQgCApRGEAABLIwgBAJZGEAIALI0gBABYGkEIALA0ghAAYGkEIQDA0v4/xZsBCgzbQEgAAAC5elRYdHJka2l0UEtMIHJka2l0IDIwMjAuMDkuNAAAeJx7v2/tPQYg4AFiRgYI4ITiBkYOBg0gzczEBqFZ2BkywHxGNoYEIIOJCZVmBmoA0YyM6HxuBkYNJkYmBSZmoCkMLKwMrGwMrOwM7BwM7IwMIoxsjOysLMxM4jAXMHA+dFM7EBoauh/Eeei2bP/qVav2wtihoVvtoerUV6/icoCK28PEQWyEejUHmDkMDAXLEOwHQLboARBLDACc4ijRP2743wAAAMh6VFh0TU9MIHJka2l0IDIwMjAuMDkuNAAAeJytkssOgjAQRff9ivsDTqZTHp21uDJi4sJ/cO//x2mVAvERRJtJuAfKyTDFIa1Tt79cUZZ0zgGai1+WquIszGz7sBGqNfqUmGIIITmY7CnjiHeKaWWLJ1Hlu4XjzLJdYYGnyjftxNIvtgxvpFmQb2aW5b3gQy9rLL/MBf85ozKXZ8sXZzRahMLKXuxTJFcCu4R8K4GlqoCluoClpoCldgqxQMw//gjygAOw6zt3A0hWfjmnGOOoAAAAgXpUWHRTTUlMRVMgcmRraXQgMjAyMC4wOS40AAB4nG2Ouw3AIAxEV0kJEljYgAGhVO7DFNmC4QOhC7ny6X7tFLxERDUt2I6uLEEs2WVjHWQ/ZapFoFJcmMxtECEgczIVISX2fFuMhmCwBTfX3vW3mcHTCIw2/nyJMXh8V8bZhXV/AG5yKT+MfmSrAAAAv3pUWHRyZGtpdFBLTDEgcmRraXQgMjAyMC4wOS40AAB4nGWOPQ6CQBCF3wz7A2qp2FIhB7CHihtsb2npETwNxRJLS4WTGDmBV3AXWCmc5OV98zJ5mc/z9oKbjRNhmmTWlWIUziNWkwuN87iTwskB88+zoy8gEY8B0V+wBhVMnHHkeiAkpBIkNXQsSBO2pEhLEfE+fIFkqPPeGNP5ZaibrrX2EdiYeznfHVq7qua8DLnn5T6vQg9waRZ+O971ntIvsD4ox16bGEEAAADNelRYdE1PTDEgcmRraXQgMjAyMC4wOS40AAB4nK2SSw7CMAxE9znFXADLSfqJ15QVokgsuAN77i8cl4ZWfFQKkaXMxMmT48Qhj1O3v1xRRuicA8SCX4aI4ByYWfdhE6iW5LNiSjHGzGDSLOOId4hpGMVTEOGBwmlG2a6gwFPlm3ZC6RdTxhO5F+SbGWV5LfhQyxrKL33Bf96o9OWZ8sUbPSiB4spa9CrBIhudoi1lo6oqRlVdjKqmGFWtGT+YVDLJPv49k4xumQOw6zt3A0icfjudBBOyAAAAjnpUWHRTTUlMRVMxIHJka2l0IDIwMjAuMDkuNAAAeJxtjksOgCAMRK/iUhJoKJ8CISYmbFzJAYxLb8HhrbITZzV5aWemLgX3Uo6yrts5V8FmO7FObVYGfIo6SqUh2kcyKwSTknYP0wNEcEgUZEYIgSxdCr00wKzD4WrM+uuMYA0/cBp9tnjvLL4tPLZj0W6gcSv/wPRnpQAAAMB6VFh0cmRraXRQS0wyIHJka2l0IDIwMjAuMDkuNAAAeJxFjjsSgkAQRHuG/YAa+kmJkAOYQ8QNNjc09AiehgDK0FDhJJacwCu4C7vuVHX1m66prvm+7m/Y2VgRlsm8bpSitJ6wWlxoXOadFM4WmP+en1wBiXQOiJaAY7AGlUycc2J7ICSkEiQ1dCpYE7akSEuR8CF8gWxqitEYM7hlatqh77pnYGMelb879t2q9nkVcsfxvqhDD3BtI38s70ZH+x+xbijJpsDqqgAAAM16VFh0TU9MMiByZGtpdCAyMDIwLjA5LjQAAHicrZJNDgIhDIX3nOJdwKaUGaRrx5VxTFx4B/fePxZGcSb+ZBwlTXiPwpdScMjj2O3OF9QhnXOAluCXoao4CTPbPqyEWk0+K6YUQsgMJssyDniHGEeheBJVHiicJpTNAgo8NT6uR5R+NuV+IveCfJxQ5teCD7UsofzSF/znjWpfnilfvNGDIhQW1mJXkRLZ2BTKUjammmpMtdWYitWYWhfjB5NqJpWPbyYORm6ZPbDtO3cFSQp+QEHBI7sAAACNelRYdFNNSUxFUzIgcmRraXQgMjAyMC4wOS40AAB4nG2OOwrAIBBEr5JSQRfXz6pIQLBJFQ8QUuYWHj4mdjFTDY/dmalrwb2Uo+S8nazyYbAujUkNLgYVhFQQzCORJIKOUdmHqQkiWCTyIiF4T4YuiU5o6GzA6WrO+usMYHR/6Gn02eKcNfi29LED83YD1YcsP4ZHfaMAAAC/elRYdHJka2l0UEtMMyByZGtpdCAyMDIwLjA5LjQAAHicZY49DoJAEIXfDPsDaqnYUiEHsIeKG2xvaekRPA3FEktLhZMYOYFXcBdYKXzJ5H3zMnmZz/P2gtPGDWFSMs+VYhTOI1aTC43zuJPCyQHzz7OjdxLxGBD9BWtQwcQZR64HQkIqwVJDx4I1YUuKtBQR78MXSIY6740xnV+Guulaax+BjbmX892htatqzsuQe17u8yr0AJdm4bfjXe8p/QKytijLR6h/vQAAAM16VFh0TU9MMyByZGtpdCAyMDIwLjA5LjQAAHicrZJNDgIhDIX3nOJdwKbADEPXjivjmLjwDu69fyxVcSb+ZBwlTXiPwpdScCjj0G9PZ9QReucAseCXISI4BmbWfVgFaiX7ophyjLEwmDTL2OMdYhxG8RRE+ErhPKGsF1DgqfGpG1GG2ZT7idIL8mlCmV8LPtSyhPJLX/CfN6p9eaZ88UYPSqC4sBa9SrAoRqdoS8WoaqpR1VajKlWjqjOTribXTLaPf8tko1tmB2yG3l0ASfp+RaAQfEIAAACOelRYdFNNSUxFUzMgcmRraXQgMjAyMC4wOS40AAB4nG2OSwqAMAxEr+JSIQ1NP2lLEYRuXNkDiEtv4eGNdmfNJuExmZk6F9pK2cuyHmOdZMtBdbhGZdCnqCMojdE+A1kRmpS0e5juIKEj5gCZMAS2fCryYFBYg52q9/rLjGiNPIgbf7p47yy9KVK24em6AaCUK/8y0zufAAAAAElFTkSuQmCC\n",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"smiles = [\"O=C1NCCC(O)C1O\", \"O=C1NCC[C@@H](O)[C@H]1O\", \"O=C1NCC[C@@H](O)[C@@H]1O\", \"O=C1NCC[C@H](O)[C@@H]1O\"]\n",
"mols = [Chem.MolFromSmiles(x) for x in smiles]\n",
"Draw.MolsToGridImage(mols)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "handy-supervision",
"metadata": {
"execution": {
"iopub.execute_input": "2021-02-12T13:18:17.256364Z",
"iopub.status.busy": "2021-02-12T13:18:17.256225Z",
"iopub.status.idle": "2021-02-12T13:18:17.259538Z",
"shell.execute_reply": "2021-02-12T13:18:17.259091Z",
"shell.execute_reply.started": "2021-02-12T13:18:17.256348Z"
}
},
"outputs": [],
"source": [
"fps = [Chem.GetMorganFingerprint(x, 2) for x in mols]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "considered-compression",
"metadata": {
"execution": {
"iopub.execute_input": "2021-02-12T13:18:17.260260Z",
"iopub.status.busy": "2021-02-12T13:18:17.260134Z",
"iopub.status.idle": "2021-02-12T13:18:17.263738Z",
"shell.execute_reply": "2021-02-12T13:18:17.263314Z",
"shell.execute_reply.started": "2021-02-12T13:18:17.260245Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.0\n",
"1.0\n",
"1.0\n",
"1.0\n",
"1.0\n",
"1.0\n"
]
}
],
"source": [
"for ix1, fp1 in enumerate(fps):\n",
" for fp2 in fps[ix1+1:]:\n",
" print(DataStructs.TanimotoSimilarity(fp1, fp2))"
]
},
{
"cell_type": "markdown",
"id": "circular-algebra",
"metadata": {},
"source": [
"Answer: No."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "super-denver",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment