# coding: utf-8 # pylint: disable = invalid-name, C0111 import json import lightgbm as lgb import pandas as pd from sklearn.metrics import mean_squared_error import numpy as np # load or create your dataset print('Load data...') df_train = pd.read_csv('cardata.csv', header=None, sep=',') df_test = pd.read_csv('testcardata.csv', header=None, sep=',') y_train = df_train[2].values print(y_train) y_test = df_test[2].values X_train = df_train.drop(2, axis=1).values X_test = df_test.drop(2, axis=1).values # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': {'l2'}, 'num_leaves': 31, 'learning_rate': 0.05, #'feature_fraction': 0.9, #'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data' : 1, 'verbose': 0 } print('Start training...') # train gbm = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5) print('Save model...') # save model to file gbm.save_model('model.txt') print('Start predicting...') y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # eval print(y_pred)