import tensorflow as tf from tensorflow.keras import layers, models, datasets # データセットの読み込み (x_train, y_train), (x_test, y_test) = datasets.mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # modelを準備する model = models.Sequential([ layers.Flatten(input_shape=(28, 28)), layers.Dense(128, activation='relu'), layers.Dropout(0.2), layers.Dense(10, activation=”softmax”) ]) # modelをコンパイルする model.compile(optimizer='adam', loss=”sparse_categorical_crossentropy”, metrics=['accuracy']) # modelの学習 model.fit(x_train, y_train, epochs=5) # 学習結果確認 model.evaluate(x_test, y_test, verbose=1)