Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"summary = \"\"\"235018 -1 0\n",
"190650 -1 1\n",
"186294 -2 0\n",
"131900 -2 1\n",
"113295 1 -1\n",
"67746 -2 2\n",
"66717 -3 0\n",
"65259 0 -1\n",
"52483 1 -2\n",
"43327 -3 1\n",
"35163 2 -2\n",
"33153 -1 2\n",
"30246 1 0\n",
"30061 -1 -1\n",
"30011 -2 -1\n",
"28822 2 -1\n",
"27140 0 -2\n",
"23739 -3 2\n",
"18669 -4 1\n",
"18426 -3 -1\n",
"15926 -2 3\n",
"15922 -3 3\n",
"15802 1 -3\n",
"14173 0 1\n",
"13933 -4 0\n",
"12695 -4 2\n",
"11462 -2 -2\n",
"11153 3 -2\n",
"10872 -1 -2\n",
"9075 1 -4\n",
"8178 2 -3\n",
"7966 2 0\n",
"7950 -4 4\n",
"7866 -3 -2\n",
"7626 -1 3\n",
"7080 0 -3\n",
"7037 -4 3\n",
"6995 -2 4\n",
"6941 3 -3\n",
"6793 3 -1\n",
"6655 -4 -1\n",
"5169 2 -4\n",
"4729 -3 4\n",
"4647 4 -2\n",
"4174 -1 -3\n",
"3854 -4 -2\n",
"3754 -2 -3\n",
"3654 1 -5\n",
"3509 1 1\n",
"3364 -3 -3\n",
"3219 0 2\n",
"3007 -5 1\n",
"2941 4 -4\n",
"2880 -1 4\n",
"2691 4 -3\n",
"2533 2 -5\n",
"2348 0 -4\n",
"2323 -2 5\n",
"2313 -3 5\n",
"2310 -5 3\n",
"2295 -5 2\n",
"2251 3 -4\n",
"2141 2 1\n",
"1988 -4 5\n",
"1973 -1 -4\n",
"1895 4 -1\n",
"1895 -2 -4\n",
"1691 3 0\n",
"1609 -2 6\n",
"1587 -4 -3\n",
"1510 -4 6\n",
"1387 5 -3\n",
"1383 3 -5\n",
"1354 1 2\n",
"1335 -5 0\n",
"1261 -5 5\n",
"1239 5 -2\n",
"1124 -5 4\n",
"1115 -2 8\n",
"1108 -3 -4\n",
"1073 -3 8\n",
"1056 0 -5\n",
"1048 -4 -4\n",
"1042 -3 6\n",
"1035 -1 5\n",
"1016 3 1\n",
"932 5 -4\n",
"926 2 2\n",
"897 -1 -5\n",
"882 -2 -5\n",
"835 5 -5\n",
"791 6 -4\n",
"736 4 -5\n",
"699 -5 -1\n",
"694 -3 -5\n",
"693 -4 8\n",
"648 2 -6\n",
"635 1 -6\n",
"626 -4 7\n",
"616 6 -2\n",
"615 1 3\n",
"611 0 3\n",
"596 5 -1\n",
"573 4 0\n",
"528 -6 1\n",
"515 6 -3\n",
"506 -1 8\n",
"500 -1 6\n",
"497 -3 7\n",
"486 -2 7\n",
"479 4 1\n",
"476 -6 4\n",
"473 -5 -2\n",
"441 -6 2\n",
"409 8 -2\n",
"405 3 2\n",
"401 8 -3\n",
"389 6 -5\n",
"385 8 -5\n",
"380 -6 3\n",
"367 -4 -5\n",
"362 -5 8\n",
"358 -4 16\n",
"339 8 -4\n",
"324 -3 16\n",
"315 -5 6\n",
"314 -8 8\n",
"306 3 -6\n",
"305 2 3\n",
"303 -8 1\n",
"295 7 -4\n",
"283 -4 9\n",
"278 -1 -6\n",
"275 -2 9\n",
"273 -6 6\n",
"270 6 -1\n",
"269 4 -6\n",
"266 5 1\n",
"259 -5 -3\n",
"253 1 4\n",
"249 -5 -4\n",
"242 -2 16\n",
"239 4 2\n",
"238 -2 -6\n",
"230 7 -5\n",
"227 7 -3\n",
"217 2 4\n",
"212 -6 5\n",
"208 6 -6\n",
"206 0 4\n",
"205 -3 9\n",
"202 5 0\n",
"201 -2 12\n",
"197 -4 12\n",
"190 -1 7\n",
"185 -4 10\n",
"183 -5 -5\n",
"180 -8 2\n",
"179 8 -1\n",
"179 7 -2\n",
"177 1 -8\n",
"177 0 -6\n",
"171 -8 5\n",
"171 -2 10\n",
"166 3 3\n",
"163 -8 3\n",
"158 -5 7\n",
"155 -3 12\n",
"154 2 -8\n",
"153 -7 4\n",
"149 9 -4\n",
"149 3 -8\n",
"146 8 -8\n",
"130 -3 11\n",
"129 -3 -6\n",
"128 -4 15\n",
"128 -3 10\n",
"127 -7 3\n",
"126 6 1\n",
"125 -7 2\n",
"124 9 -5\n",
"123 -7 1\n",
"123 -1 9\n",
"121 3 -7\n",
"121 -2 11\n",
"121 16 -2\n",
"119 -8 4\n",
"119 5 -6\n",
"116 -5 16\n",
"113 -4 11\n",
"108 9 -3\n",
"108 4 -7\n",
"107 -4 -6\n",
"106 1 -7\n",
"103 -8 6\n",
"103 7 -1\n",
"101 10 -4\n",
"100 5 2\n",
"100 1 5\n",
"99 -7 5\n",
"99 2 -7\n",
"94 -6 0\n",
"94 16 -4\n",
"92 5 -8\n",
"92 12 -4\n",
"91 2 5\n",
"89 9 -2\n",
"87 0 5\n",
"79 -4 13\n",
"78 16 -3\n",
"77 -6 -2\n",
"77 -2 13\n",
"75 -1 12\n",
"73 6 2\n",
"73 4 3\n",
"73 -3 15\n",
"73 -1 -7\n",
"73 -1 10\n",
"71 3 4\n",
"70 8 -6\n",
"70 -7 7\n",
"68 2 6\n",
"67 -6 -1\n",
"67 16 -5\n",
"66 4 -8\n",
"65 11 -4\n",
"64 -3 14\n",
"63 4 4\n",
"63 -3 13\n",
"62 3 5\n",
"62 -2 15\n",
"62 10 -5\n",
"61 6 0\n",
"61 -1 16\n",
"60 -7 6\n",
"60 -2 -7\n",
"59 -6 8\n",
"58 5 -7\n",
"57 -9 5\n",
"55 7 1\n",
"55 -5 9\n",
"54 8 1\n",
"53 -3 -7\n",
"53 11 -5\n",
"52 7 -7\n",
"50 -6 -3\n",
"50 -4 14\n",
"50 -1 11\n",
"48 -9 4\n",
"48 12 -2\n",
"48 10 -3\n",
"47 -8 7\n",
"47 -5 -6\n",
"46 16 2\n",
"46 1 6\n",
"46 10 -2\n",
"45 9 -6\n",
"45 6 -8\n",
"45 0 -7\n",
"44 -2 14\n",
"43 -9 6\n",
"43 9 -1\n",
"43 7 -6\n",
"43 -6 7\n",
"43 12 -5\n",
"42 -3 -8\n",
"41 -5 10\n",
"41 16 -1\n",
"40 -2 -8\n",
"39 5 3\n",
"39 2 -9\n",
"39 -16 16\n",
"37 6 -7\n",
"37 -4 -7\n",
"37 4 5\n",
"36 -6 -4\n",
"35 -1 -8\n",
"34 -5 15\n",
"34 -5 11\n",
"34 -4 -8\n",
"34 3 -9\n",
"33 -9 1\n",
"33 1 -9\n",
"33 12 -3\n",
"32 -9 2\n",
"32 -7 0\n",
"32 3 6\n",
"32 2 7\n",
"32 15 -4\n",
"31 13 -5\n",
"31 13 -4\n",
"31 11 -3\n",
"30 -5 12\n",
"30 0 6\n",
"29 6 3\n",
"29 -6 16\n",
"29 -5 -7\n",
"29 -5 13\n",
"29 4 -9\n",
"29 4 6\n",
"29 1 8\n",
"29 16 -16\n",
"28 16 1\n",
"28 12 -6\n",
"28 10 -6\n",
"27 8 2\n",
"27 16 -6\n",
"26 -9 7\n",
"26 9 1\n",
"26 7 2\n",
"26 -6 -6\n",
"25 -8 16\n",
"25 7 0\n",
"24 8 8\n",
"24 5 4\n",
"24 0 7\n",
"23 -5 14\n",
"23 3 7\n",
"23 1 15\n",
"22 -8 -3\n",
"22 -8 -2\n",
"22 -8 0\n",
"22 1 16\n",
"21 -9 9\n",
"21 -7 -2\n",
"21 -6 9\n",
"21 -6 -5\n",
"21 2 8\n",
"21 16 3\n",
"21 11 -6\n",
"21 11 -2\n",
"20 8 -16\n",
"20 -7 -3\n",
"20 16 8\n",
"19 -9 3\n",
"19 7 -8\n",
"19 -5 -8\n",
"19 14 -4\n",
"19 12 -1\n",
"19 10 1\n",
"18 5 5\n",
"18 4 -10\n",
"18 -1 13\n",
"17 -8 -1\n",
"17 -7 8\n",
"17 6 4\n",
"17 3 8\n",
"17 16 -8\n",
"17 16 4\n",
"17 15 -5\n",
"17 13 -2\n",
"17 11 -1\n",
"17 11 1\n",
"17 -10 8\n",
"16 -8 -4\n",
"16 -7 -1\n",
"16 5 -9\n",
"16 3 -10\n",
"16 1 7\n",
"16 15 -2\n",
"16 15 2\n",
"16 10 -1\n",
"15 9 -9\n",
"15 9 -7\n",
"15 8 -7\n",
"15 5 6\n",
"15 16 6\n",
"15 13 -3\n",
"15 -10 6\n",
"14 8 3\n",
"14 6 6\n",
"14 15 -8\n",
"14 14 -5\n",
"14 -1 15\n",
"14 -1 14\n",
"13 9 -16\n",
"13 6 -9\n",
"13 16 5\n",
"13 15 -3\n",
"13 12 1\n",
"12 9 2\n",
"12 8 -9\n",
"12 6 -16\n",
"12 2 -10\n",
"12 15 1\n",
"12 14 -3\n",
"12 1 -16\n",
"12 -11 1\n",
"11 -8 11\n",
"11 6 -10\n",
"11 -6 10\n",
"11 2 9\n",
"11 2 16\n",
"11 -16 12\n",
"11 14 -2\n",
"11 -12 8\n",
"11 10 -8\n",
"11 0 -8\n",
"10 -9 8\n",
"10 8 0\n",
"10 7 -9\n",
"10 -7 9\n",
"10 7 3\n",
"10 5 -10\n",
"10 3 -11\n",
"10 14 -8\n",
"10 12 -7\n",
"10 -12 12\n",
"10 1 14\n",
"10 1 -11\n",
"10 1 -10\n",
"10 10 6\n",
"9 7 -16\n",
"9 -7 16\n",
"9 -6 11\n",
"9 4 7\n",
"9 3 -12\n",
"9 -2 -9\n",
"9 2 -11\n",
"9 -16 10\n",
"9 12 4\n",
"9 12 2\n",
"9 11 -7\n",
"9 -11 7\n",
"9 1 11\n",
"9 -10 5\n",
"9 -10 2\n",
"9 10 -10\n",
"9 0 8\n",
"8 9 -8\n",
"8 -8 9\n",
"8 -8 12\n",
"8 8 -11\n",
"8 -8 10\n",
"8 -7 -4\n",
"8 6 8\n",
"8 -4 -9\n",
"8 4 -11\n",
"8 1 9\n",
"8 16 -7\n",
"8 15 3\n",
"8 -14 8\n",
"8 13 -1\n",
"8 12 -12\n",
"8 -11 8\n",
"8 1 12\n",
"8 -10 7\n",
"8 -10 4\n",
"8 10 2\n",
"7 9 12\n",
"7 -8 -8\n",
"7 8 5\n",
"7 -8 -5\n",
"7 -8 14\n",
"7 -7 -5\n",
"7 -6 12\n",
"7 5 7\n",
"7 4 9\n",
"7 4 10\n",
"7 2 15\n",
"7 2 -12\n",
"7 -1 -9\n",
"7 -16 9\n",
"7 -16 13\n",
"7 15 4\n",
"7 14 -6\n",
"7 -14 14\n",
"7 13 -7\n",
"7 -13 13\n",
"7 -11 3\n",
"7 11 2\n",
"7 -11 2\n",
"7 11 -16\n",
"7 -10 10\n",
"7 -10 1\n",
"6 9 4\n",
"6 8 -13\n",
"6 -7 12\n",
"6 6 5\n",
"6 -5 -9\n",
"6 5 -11\n",
"6 4 -12\n",
"6 3 16\n",
"6 2 11\n",
"6 16 9\n",
"6 16 16\n",
"6 16 -11\n",
"6 -16 11\n",
"6 15 -15\n",
"6 15 -1\n",
"6 14 2\n",
"6 -14 16\n",
"6 13 -9\n",
"6 13 -8\n",
"6 13 -6\n",
"6 12 -16\n",
"6 -11 6\n",
"6 -11 16\n",
"6 -10 3\n",
"5 9 5\n",
"5 9 3\n",
"5 -9 12\n",
"5 9 0\n",
"5 8 4\n",
"5 7 8\n",
"5 7 6\n",
"5 7 4\n",
"5 -7 11\n",
"5 6 7\n",
"5 -6 -7\n",
"5 6 -12\n",
"5 5 14\n",
"5 4 8\n",
"5 4 16\n",
"5 3 9\n",
"5 -3 -9\n",
"5 3 12\n",
"5 -2 -10\n",
"5 -16 6\n",
"5 16 -14\n",
"5 -16 14\n",
"5 15 8\n",
"5 -15 16\n",
"5 14 1\n",
"5 -13 9\n",
"5 -13 8\n",
"5 13 1\n",
"5 -13 1\n",
"5 12 -9\n",
"5 12 -8\n",
"5 -12 5\n",
"5 -12 1\n",
"5 11 -8\n",
"5 1 13\n",
"5 -1 -10\n",
"5 -10 9\n",
"5 10 -7\n",
"5 -10 12\n",
"4 -9 15\n",
"4 -8 15\n",
"4 -8 13\n",
"4 8 11\n",
"4 8 -10\n",
"4 7 7\n",
"4 -7 -7\n",
"4 7 -10\n",
"4 -6 -8\n",
"4 -6 15\n",
"4 5 8\n",
"4 -5 -11\n",
"4 4 -15\n",
"4 3 -16\n",
"4 3 -14\n",
"4 3 14\n",
"4 3 10\n",
"4 2 -16\n",
"4 2 -14\n",
"4 -16 8\n",
"4 16 7\n",
"4 16 10\n",
"4 -15 8\n",
"4 15 6\n",
"4 15 5\n",
"4 15 -16\n",
"4 -15 15\n",
"4 -13 16\n",
"4 13 -13\n",
"4 -13 10\n",
"4 -12 7\n",
"4 -12 6\n",
"4 11 -9\n",
"4 11 6\n",
"4 11 5\n",
"4 11 -15\n",
"4 -11 15\n",
"4 11 -11\n",
"4 -11 11\n",
"4 -10 16\n",
"4 10 0\n",
"3 -9 -2\n",
"3 -9 16\n",
"3 -9 0\n",
"3 8 7\n",
"3 8 6\n",
"3 8 -15\n",
"3 8 -14\n",
"3 8 -12\n",
"3 8 12\n",
"3 -7 -6\n",
"3 7 5\n",
"3 7 -13\n",
"3 6 9\n",
"3 6 -15\n",
"3 6 -14\n",
"3 -6 14\n",
"3 6 -13\n",
"3 5 -14\n",
"3 5 12\n",
"3 -5 -10\n",
"3 4 -16\n",
"3 4 15\n",
"3 4 -14\n",
"3 4 12\n",
"3 4 11\n",
"3 -4 -10\n",
"3 3 13\n",
"3 2 12\n",
"3 16 -9\n",
"3 -16 2\n",
"3 -16 1\n",
"3 15 -9\n",
"3 15 -6\n",
"3 15 -11\n",
"3 14 8\n",
"3 14 -14\n",
"3 -14 10\n",
"3 14 -1\n",
"3 -13 6\n",
"3 -13 5\n",
"3 12 5\n",
"3 12 3\n",
"3 12 16\n",
"3 -12 16\n",
"3 12 12\n",
"3 12 0\n",
"3 -11 9\n",
"3 1 -15\n",
"3 -11 5\n",
"3 11 4\n",
"3 -11 4\n",
"3 11 3\n",
"3 1 -13\n",
"3 11 11\n",
"3 1 10\n",
"3 10 4\n",
"3 10 -16\n",
"3 -10 14\n",
"3 0 -9\n",
"3 0 9\n",
"3 0 10\n",
"2 9 7\n",
"2 9 6\n",
"2 -9 -5\n",
"2 9 -13\n",
"2 9 13\n",
"2 9 -12\n",
"2 -9 11\n",
"2 -8 -7\n",
"2 8 16\n",
"2 8 10\n",
"2 7 -15\n",
"2 -7 15\n",
"2 7 -11\n",
"2 -7 10\n",
"2 -6 -9\n",
"2 -6 13\n",
"2 6 -11\n",
"2 5 -16\n",
"2 5 -15\n",
"2 5 -13\n",
"2 5 -12\n",
"2 5 11\n",
"2 4 -13\n",
"2 -4 -11\n",
"2 -3 -16\n",
"2 3 15\n",
"2 3 -13\n",
"2 -3 -11\n",
"2 -3 -10\n",
"2 2 14\n",
"2 2 -13\n",
"2 -2 -12\n",
"2 -2 -11\n",
"2 2 10\n",
"2 -16 7\n",
"2 16 -15\n",
"2 -16 15\n",
"2 16 -13\n",
"2 16 -10\n",
"2 -15 9\n",
"2 15 -7\n",
"2 15 7\n",
"2 -15 7\n",
"2 -15 6\n",
"2 -15 5\n",
"2 15 16\n",
"2 15 -14\n",
"2 -15 13\n",
"2 -15 12\n",
"2 -15 10\n",
"2 -15 1\n",
"2 -14 9\n",
"2 14 -7\n",
"2 14 5\n",
"2 -14 2\n",
"2 14 -11\n",
"2 14 -10\n",
"2 -14 1\n",
"2 -13 -4\n",
"2 -13 3\n",
"2 13 2\n",
"2 -13 2\n",
"2 13 -10\n",
"2 -12 9\n",
"2 12 8\n",
"2 -12 -5\n",
"2 -12 -3\n",
"2 -12 2\n",
"2 12 -15\n",
"2 12 -14\n",
"2 12 14\n",
"2 -12 10\n",
"2 -12 0\n",
"2 -1 -16\n",
"2 1 -12\n",
"2 -1 -12\n",
"2 11 16\n",
"2 -11 14\n",
"2 -11 13\n",
"2 -11 12\n",
"2 11 0\n",
"2 10 3\n",
"2 10 -15\n",
"2 10 13\n",
"2 -10 11\n",
"2 0 11\n",
"1 -9 -8\n",
"1 9 16\n",
"1 9 -15\n",
"1 -9 13\n",
"1 -9 -12\n",
"1 9 -11\n",
"1 9 11\n",
"1 9 -10\n",
"1 9 10\n",
"1 -9 10\n",
"1 -9 -1\n",
"1 8 9\n",
"1 -8 -9\n",
"1 -8 -6\n",
"1 -8 -16\n",
"1 8 13\n",
"1 -8 -13\n",
"1 -8 -12\n",
"1 -7 -8\n",
"1 -7 14\n",
"1 7 -12\n",
"1 7 12\n",
"1 7 10\n",
"1 -7 -10\n",
"1 6 16\n",
"1 -6 -16\n",
"1 -6 -15\n",
"1 -6 -12\n",
"1 6 11\n",
"1 5 15\n",
"1 4 14\n",
"1 -4 -13\n",
"1 3 -15\n",
"1 -3 -13\n",
"1 -3 -12\n",
"1 3 11\n",
"1 2 -15\n",
"1 -2 -14\n",
"1 2 13\n",
"1 -2 -13\n",
"1 -16 -9\n",
"1 -16 -8\n",
"1 -16 -6\n",
"1 -16 4\n",
"1 -16 3\n",
"1 16 -12\n",
"1 15 9\n",
"1 -15 -8\n",
"1 -15 4\n",
"1 -15 3\n",
"1 -15 2\n",
"1 15 -13\n",
"1 15 12\n",
"1 15 11\n",
"1 15 -10\n",
"1 14 -9\n",
"1 -14 -8\n",
"1 14 7\n",
"1 14 6\n",
"1 -14 -6\n",
"1 -14 6\n",
"1 -14 5\n",
"1 14 4\n",
"1 -14 4\n",
"1 14 -16\n",
"1 -14 -16\n",
"1 14 -15\n",
"1 -14 15\n",
"1 -14 12\n",
"1 -14 0\n",
"1 13 9\n",
"1 -13 4\n",
"1 -13 -2\n",
"1 13 -16\n",
"1 13 16\n",
"1 13 15\n",
"1 -13 15\n",
"1 13 -14\n",
"1 -13 14\n",
"1 -13 12\n",
"1 13 10\n",
"1 12 9\n",
"1 -12 -7\n",
"1 12 6\n",
"1 -12 4\n",
"1 -12 3\n",
"1 -12 -16\n",
"1 12 15\n",
"1 -12 15\n",
"1 12 -11\n",
"1 12 11\n",
"1 12 -10\n",
"1 11 7\n",
"1 -11 -5\n",
"1 -1 -15\n",
"1 -1 -13\n",
"1 -11 -16\n",
"1 11 15\n",
"1 11 -13\n",
"1 11 -10\n",
"1 11 10\n",
"1 -11 10\n",
"1 -11 -1\n",
"1 -11 0\n",
"1 10 -9\n",
"1 10 8\n",
"1 -10 -8\n",
"1 10 16\n",
"1 10 15\n",
"1 10 14\n",
"1 10 -13\n",
"1 -10 13\n",
"1 10 -11\n",
"1 10 10\n",
"1 0 15\n",
"1 0 13\n",
"1 0 -11\n",
"1 0 -10\"\"\"\n",
"tuples = [tuple(map(int, line.split())) for line in summary.splitlines()]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdcAAAHoCAYAAAAbqKW5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XuU1PV9//HXXHf2fgMWDKgVTBA8EI7gBRMil3M4VaNG\n5fw00VRNPK2RE6QmFnoST9toa6CKQQoY1Ng0Nz1qLLVpNUbjJdFwU6xKbURroFwUdpdlL7OzszO/\nPzy7ERDY98f3zI7L8/GXjJ/3fD7f7858Xzvf3X1/Ivl8Pi8AAOAmOtgLAABgqCFcAQBwRrgCAOCM\ncAUAwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1xRdOPHj9eKFSsGexmDYtWqVbrvvvuOOGb3\n7t360pe+pEmTJunss89Wd3d3kVb3R4sWLdKsWbMKXjNQK1as0CmnnOL2fBs3btTChQt1zjnnaPLk\nyZozZ45uvvlmbd269ZCx+Xxe9957r+bOnavJkyfrwgsv1L/927+5rQVDE+EKFNH3vvc9dXZ2HnHM\n/fffr82bN2vp0qVasWKFysrKirS6P4pEIopEIgWvGah58+bpgQcecHmuu+++W1dccYU6Ojp00003\n6d5779V1112n1157TRdffLF+8YtfHDD+zjvv1J133ql58+bp7rvv1vTp0/XNb37zkHHAB8UHewEA\nDtTa2qoRI0Zo7ty5g72UktHU1KSmpqaP/DzPPPOMli1bpvnz52v+/Pn9j0+dOlUXXXSRFi5cqMWL\nF+tTn/qUxo4dq3Q6rR/+8If6sz/7M331q1+VJJ155pl69dVX9cMf/lDnnnvuR14ThiY+uWLQvffe\ne1q8eHH/Lbp58+bpqaeeOmBMR0eHbr75Zk2fPl1TpkzRX/7lX+r+++/X+PHjj/jc7e3t+s53vqMZ\nM2ZoypQpuvTSS/XMM8/0//9cLqcf//jH+vznP6/Jkydr5syZuv3225XJZPrHXHnllfryl798wPOu\nW7dO48eP1/r16yVJjzzyiCZOnKhXXnlFl112mSZNmqRZs2YdcAt4/PjxikQiR7zFOWvWLD366KPa\nsWOHTjnllP7b5wM5R3232y+55BJNnjxZK1eu/NA5crmcvv/97/cf85QpU3TZZZfpd7/73WHP46xZ\ns7Rs2TLdcsstmjZtms444wz91V/9lfbt23fI2J///OeaO3euJk2apAsvvFDPPvvsAf9//fr1+spX\nvqLTTz9dp556qmbPnn3UHxPcddddB3ytr7zySn3rW9/SmjVrNHPmTE2aNEmXX365XnnllSM+z6pV\nqzR27NgDgrVPLBbTd77zHUWjUa1Zs0aSlEwm9cADD+jqq68+YGwymTzgNQIcjHDFoNq7d68uueQS\nbdq0STfeeKPuuusujR49Wtdff70ee+yx/nHXXXedHn/8cS1YsEB33nmnOjs7dccddxzxNmQul9M1\n11yjxx57TH/xF3+hlStXaty4cbr++uu1ceNGSdK3v/1t3XbbbZo7d65Wr16tK664Qj/60Y/0ta99\n7ahr/+DckUhEuVxON9xwg84//3ytWbNGp512mpYsWaLf/OY3kqQHH3xQ+Xz+iLc4V65cqRkzZmj4\n8OF64IEHNG/evAGfI0n9obl8+fLDfvJdunSpVq1apcsuu0z33nuvbrnlFu3bt08LFiw44s93f/KT\nn+iVV17RkiVL9I1vfEO//vWv9ed//ucHjNm5c6fWrFmjhQsX6q677lIkEtGCBQvU3NwsSfrv//5v\nXX311WpsbNSdd96pu+++W9OmTdOKFSuOeJv1w245P/744/rVr36lm2++WXfccYf27NmjBQsW6HAb\nfbW2turll1/W7NmzDztPbW2tpk+frl/96leSpGg0qk9+8pNqbGyU9P7r9fvf/75eeOEFffGLXzzs\n8wDcFsaguu+++9Ta2qoHH3xQI0eOlCTNmDFDra2t+u53v6vzzz9fL7zwgtatW6cVK1Zozpw5/WPO\nP/98vfXWW4d97meeeUavvPKKVq1apZkzZ0qSzjrrLL3zzjt68cUXVVdXp4cffljf+MY3+m/5nXXW\nWRo+fLhuuukmPfvss5oxY8Zhn//gi3g+n9f8+fN18cUXS5KmTJmiJ554Qk8//bTOPvtsTZo0SdL7\ntzj7/vtg48ePV0NDg5LJZP+YpUuXHvUc9Zk2bZquuuqqw65Zkvbs2aMbb7xRX/rSl/ofSyaT+vrX\nv6433njjsGuLxWL6wQ9+oMrKSklSfX295s+fr+eff16f+cxn+s/BypUrdeKJJ/Y/7zXXXKPNmzdr\n5syZeuONN/SZz3xGS5Ys6X/evjBbt26d6TZrNpvVfffdp4qKCknv36VYvHixtmzZogkTJhwyfseO\nHZKkT3ziE0d83uOPP15PPfWU2traVFNT0//4v//7v+vGG29UJBLR5z73OV1wwQUDXiuOPXxyxaBa\nv369pkyZ0h8afS644ALt2bNHW7du1e9+9zslEon+YJXe/yTzp3/6p0d87k2bNimRSPQHa5+f/vSn\nuv7667Vu3TpFIhGdd955B/z/8847T7FYTOvWrTMdSyQS0eTJk/v/nUwm1dDQoK6uLtPzHGwg56jP\npz71qaM+39KlS3XFFVeoublZGzdu1COPPKK1a9dK0hFvdc6ePbs/WPv+HY/H+2+NS+8Hbl+wStLo\n0aOVz+fV1tYmSbrwwgu1evVqZTIZvfHGG3riiSe0fPlyZbNZ823Wk08+uT9YJfWfn6P9wtjRRKPv\nXxZ7e3sPeHzSpEn60Y9+pG9961vatGmTvvKVr3ykeTC08ckVg2rfvn0aM2bMIY8PGzZMkrR//341\nNzerrq7usGMOp7W19UPrPjj3hz1PLBZTfX19fyBYlJeXH/DvvtvFH8VAzlGfD4bN4fzXf/2X/vZv\n/1avvvqqysvLdfLJJ2vUqFGSDv00/kEH/0JRJBJRXV2dWltb+x87+Pj7gqrvebu7u/V3f/d3Wrt2\nrXp7ezV69GhNmTJFiUTiiHN/mFQqdcS5DtZ3jNu3bz/i827btk0VFRWqr68/4PExY8ZozJgxmjp1\nqiorK7V48WJt2LBBU6dONa0bxwY+uWJQ1dbWas+ePYc8/u6770p6/5PQyJEj1dLScsiYD6v7oOrq\n6gMu/H22bNmi119/XbW1tR/6PNlsVi0tLWpoaJD04QHZ2dlZsD87OdjRzlHfOgeivb1d1157raqr\nq/WLX/xCL730kh588MH+W9lHcvDXIJfLqbW19ajf5HzQLbfcol/+8pdavny5Nm3apCeeeELf/e53\nFY8X/vv8+vp6TZkyRb/85S8PeLytrU3btm2T9P75eeGFF/pvczc3N+vRRx/t/5lxn4kTJyqfz/d/\nDYCDEa4YVNOmTdNLL72knTt3HvD42rVrNWzYMJ1wwgk6/fTT1dvbe8hvxz755JNHfO6pU6cqm83q\nueeeO+DxRYsW6e6779bpp5+ufD5/yC8FPfbYY8rlcjrttNMkSVVVVdq1a9cBYzZs2GA6zj59n64s\njnaOjj/++AE/11tvvaXW1lZdeeWVOumkk/of7/uN3iN9yn7mmWeUzWb7//3kk0+qt7dXZ5111oDn\n37Rpk8444wzNnDmz/5Pnq6++qubmZvMn1xDz58/XH/7wBy1btqz/seeff15z587V4sWL9e1vf1td\nXV267rrrJL3/SXvRokV66KGHDnie559/XpFIZEC34XFs4rYwBtXVV1+ttWvX6qqrrtL111+vuro6\n/fznP9e6dev0D//wD5LeD8np06frr//6r7Vw4UIdd9xxeuihh/Q///M/R/z02PdnK4sWLdKCBQs0\nZswYPfroo3r77bd16623auzYsfrCF76g5cuXq6urS9OmTdPrr7+uFStW6Mwzz9RnP/tZSdLMmTP1\n9NNP67bbbtOsWbO0YcMG/eu//mvQ8VZXV+ull14y3U4cyDkaqJNOOklVVVVavXq1YrGY4vG4Hn/8\n8f7wONLPh3ft2qXrrrtOV1xxhXbu3Klly5ZpxowZptuikyZN0n/+53/qZz/7mcaOHastW7Zo9erV\nikajH/lnpdKRb2tL0tlnn62bbrpJS5cu1ZYtW3TRRRdpxIgR+vKXv6z7779fkUhEF198cf+f/Ywa\nNUqXXnqpVq5cqXg8rlNOOUUbNmzQmjVrNG/ePI0dO/YjrxlDE+GKovvgn1UMGzZMP/vZz3T77bfr\n1ltvVSaT0fjx47Vq1Sqdc845/TXLli3TbbfdpjvuuEM9PT2aM2eOLr/88iOGXDQa1T333KPbb79d\ny5cvV2dnp8aPH6/77rtPp556qiTp7//+73XiiSfq4Ycf1po1a9TU1KSrrrqq/5OLJF1yySXatm2b\nHnnkET3wwAM6/fTTddddd+nyyy83Hav0/p8UrVq1Stdee63+4z/+45BfUvpgXZ+BnqOBdEiqqqrS\nqlWrtGTJEt1www2qrKzUhAkT9OMf/1jXXnutNmzY0P+cBz/Xueeeq9raWi1cuFAVFRW6+OKLtXDh\nwsOu+8MeW7RokbLZrL73ve8pk8lo9OjR+trXvqbf//73evrpp5XP5w97DAc/frS5Dueqq67SlClT\n9M///M9asmSJWlpa1NjYqC984QsaPXq07rnnHu3YsUO33nqrjjvuOP3N3/yNxowZowcffFA7duzQ\nqFGjdMMNN+iaa6456lw4dkXyxbgXA3wEO3bs0Msvv6w5c+YomUz2P/71r39d27dv1yOPPDKIqzs2\nzJo1S2eccYb5k/LH0a5du/Qv//Ivmj9//iG/oAUMFJ9cUfKi0agWLVqk2bNn69JLL1U0GtVzzz2n\nJ5988pi42KO4Ro4cqW9+85uDvQx8zBGuKHkjR47UPffco3/6p3/SwoUL1dPTo3Hjxukf//Ef6e1a\nJIVsyg8MRdwWBgDAGX+KAwCAM8IVAABnJfMz17cfsv3d4IgzTzXP0b23+eiDDlLWOPDuNx9UOdr2\n9297N75oniPVNNxc05tOm2vafr/NND5ZV3n0QQfp3HFoB6aj1jTb/y6yp7v36IMOEovZf9aYSWeP\nPuggNU1V5hpJGvfFo3dX+qD/fXiteY5Mh317tVSd/Tdto4mYbXzSfgnL99rbUVaOHmGu2f/WDnNN\nxSj79SZWnjr6oA9RN+HTQXVDRcg1t/G0Mwc8lk+uAAA4I1wBAHBGuAIA4IxwBQDAGeEKAIAzwhUA\nAGeEKwAAzghXAACcEa4AADgjXAEAcEa4AgDgjHAFAMBZyTTur59wgml8evd75jlCGt1L9ib8IRK1\n1eaa3nRaNeMmmmra3nzNPE80bmumXjnmOPMcqeH2huVx44YCkpRp7zbXpBrsGxHks/YNAlLDas01\nIcoCjidRVWavqakw11hfa/FK+xwhEjX292flmLDrTcPkaUF1sAnNg4HikysAAM4IVwAAnBGuAAA4\nI1wBAHBGuAIA4IxwBQDAGeEKAIAzwhUAAGeEKwAAzghXAACcEa4AADgrmd7CCNOxfetgLwEAcJCS\nCde6CZ8u+BwhTeuLJZZKFW0e60YEXTvtmyRYZVr2mWusTd4lKVlpb0AfiUbMNdGyhLkmZPOGEGUN\nNeaakI0IJKnxtDOD6gYq9JvLYmzG0ZtOF3wOhCv0a4DbwgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCA\nM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4KxkeguXstbXXzbXFKNXcqi9G18c7CUAwJB2\nTIVrzbiJ5pqQYA0R0kQ6pGl5ere9CX+8wrapQNfO3eY5IlH7TZR0a6e5JkRZ3L62fG/OXJN+r9lc\nI0k144LKTFJNwws/SYBiNOAPFXK9wdDBbWEAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IV\nAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBWMr2Frc3kS7XXaZ93X3jOXDPirM8WYCUY6trefG2wl3BY\n1rWld+81jU81NZrG9ylG39+Q3t9S6fZLDn2dWc91sc5byPFYjqVkwrVUJWqqzV+0kGANEfIm7N4b\n1hzeItuWNtd0vdtmrunNZO3ztNrXpnzeXNLT1RMwj72k5pNjzDXpPfvMNdn2LnNNaPABQwG3hQEA\ncEa4AgDgjHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBm9hUtI\n6+svm2vqJny6ACsBhrZj/b1Wyps9DBUlE675XM40vqdtf9A8xXiDhOxuE/JmDxFNJMw1uR5bE/pI\n1H5DJJqImWty+7vNNfGygJd8JGIuKa+vCJjHXhJLpcw1uYAND6I1AccTwNrsP5cJ2CChSEp1d5uP\nohi7CRXrvIW8dyy4LQwAgDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCA\nM8IVAABnhCsAAM5Kprcwwrz7m2dN45P1NQVaCQAcqGP71qC6odCXuWTCNVlfaxpf6KbLxRayoYA1\nWCUp09KmEWfPMNXs+vVTpvHJ+mrTeEnK7Wo11/RmbZs9SFKm097oPZaw3+DJdtnnqWyyn7egDSzy\n9pJcttdcE/Ie7U2nTeOjyYS5mfzu535tGj8UFaMBf6krdIBzWxgAAGeEKwAAzghXAACcEa4AADgj\nXAEAcEa4AgDgjHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJyVTG/hUhXaeDpEsZpV/98TT5jGx5K8\nTFC6mjevL8o8IdeCodCAvs+e9b8115SPairASj4eSuaq2f7OTnPNcbPnFGAlHx/WBvySPVglKVqW\nMI3v2t1inqMnoKF+en+3uSaXtXet79pnnycWt98UisTazTXlIxvMNdnugM0L0hlzTffeZnNN3rhB\nQCQeM89R9SdjzDWAFbeFAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wB\nAHBGuAIA4IxwBQDAWcn0Fg7R9uZrBZ8jlkoVfI4+777wnGl8sra6QCsB4OGdRx8z15xw0fmm8SEb\nCvS07TfXDDWF3oihZMK1t8vWGLx2/AkFWsmB0rvfM9ckAkIv/Z69yXmIaMLe6PwPz79lGj9q8ijz\nHD1pezP5lnc7zTXRWMRc0xvQ7D9EdV2Zuabm+A5zTfe+tLlGOfs5yGdz5prUiDrT+FzG/rrpTQcc\nf4CWV98uyjzFkqyvNdf0ptOqGTexAKspfdwWBgDAGeEKAIAzwhUAAGeEKwAAzghXAACcEa4AADgj\nXAEAcEa4AgDgjHAFAMAZ4QoAgDPCFQAAZ4QrAADOSqZxf1l9lWl86G41ll0NpPCdd6zNqmOp4uxs\nEY3bG/ePnNhkGt++c595jkRFwlyTCqjpDWgmnyyzfw8aT9hrygKOJ7233VwTJGrf8CCWsh+PVUgz\n+WxHwIYPCfuxVP+J7X0TynpNw/sKfd745AoAgDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgC\nAOCMcAUAwBnhCgCAM8IVAABnhCsAAM5KprdwsYT2CrZq3rzeNL6ssaFAKwHwcRJyjbL2MkfhlUy4\n9mZ6bOPT6QKt5KMLaQweIv1us7km12tvXN+1t8M0Pp60v6x2v9Virkl32l4zkrS/PWOuKSuzH08u\nlzfX1NQkzTXJgGb/XW3d5ppsptdckw94rSXabe/r8hH2dXU32ze8SI2oM9dkO+3XqNRwvskeKrgt\nDACAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4IxwBQDAGeEKAIAzwhUAAGeEKwAAzkqm\ntzAAoDg6tm8114T2c7duKmDd9KRPw+RpQXWFUjLhWnPyiQWfI+TFEUulilKT3v2euSYSs994yHfb\nm913tdnOWyJlf1mVV9ob0O/e2W6u6Q1oqN/RGvC6iUbMNSHi79o2VZDCmvDH4vbXWm/APNF41jS+\na3ereY5IwLHkjBuLSFKytjponroJnzbXofRwWxgAAGeEKwAAzghXAACcEa4AADgjXAEAcEa4AgDg\njHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJyVTG9hAIC0Z/1vCz5H+aimgs9RbG1vvmYan+3oNM9h\n2RygZMLV2lQ/pJF2NGlvDh8ipAl/b8Dx9Oy3N5Tv6ew218TLbC+T7g77sbQHNMePBjTH37HH3uw/\nGrHP0562n4PGtH3DhxCJgMb1kaj9dROygUOm03beyiqT5jmiCfvxJyrtX5tc0v4aCLmuhQjd4aYY\nQna3sQZrMXBbGAAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABnhCsA\nAM5Kpv0hAGDosbYmLOXWthYlE64hJ7RuwqdN41tff9k8Ryxl7ynam86Ya/K5nLkmErP3vM3n8uaa\nzhZbH9Jo3L6uXMC62o19aCUpGY+Za3a22PsRt2fsvXjTPfbjicfsN5/KA3r+hvRx7jC+biSpst72\nfuvusL/XUrX293TXnjZzTazN3hi+4rhGc000YQ+WXKbHfP1s3rzePE+8ssJcEyLkOt2zb38BVvJH\n3BYGAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABn\nJdNbGABQPHs3vmgaHwnoy30sI1wLIJq0n9ZcJlucebL2DQLyeVtT/WjM/iZsa7M3YG/vtNe0dtqb\nyffkes012/e1mGsSUft5ywZs+DCmsdZcE4nYG/cnkvYbY1nj67Oqrsw8R7q1y1yTqis314Scs0yL\nvZl89bgTzDXp3e+Za0Kb8NeMm2ga37F9q3mOrp27zTXZDvu1wILbwgAAOCNcAQBwRrgCAOCMcAUA\nwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4Oxj3Vu47c3XBnsJAIAjaN683jS+\nrLGhQCsprpIJ167de03jK8eMNM8RTSbMTaRDArx8VJO5pv3tbeaaaMAuFdG4/WZFLmdr3B8ioMe5\n0j32zQ72p+3N/vel7Y3eu3q6zTXbu/aZa0I0VtkbsJeX2S8V7e095pqamO31meu1vzbjAcdSVpMy\n12T22xvDR8sS5pretH2e3oD3QW+m2VwTr7Cft5BrYbq53VwTsrGCBbeFAQBwRrgCAOCMcAUAwBnh\nCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4IxwBQDAGeEKAICzSD6fL3xXdpSMkI0I\nOrfvNo3fv63FPEfz/7WZa975X3uj+9b99ob6u1rtTcHfat5jrtnTGda4/7HNPzGNv2HWjeY5xg63\n71Ry0ifqzDX1jeWm8dX19sbwlcMrzTWxhH2TjPLhNeaaVFOjuSZELGU/b5JUOXqs80qGLj65AgDg\njHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAs/hgL6BP\nx/at5ppS7XMZciyS/XiaN683zxGvrDDXoLRNOuFzpvGzxk4t0Eow1L26+qem8XXH15vniAb0cQ7R\n+k6zuWbCV//fgMeWTLiiODIt9ubwHbtsNZmuHvMcmXTWXBOLRcw18YCaqlTSXDOiqtpcE7KHxks7\nt5hrnn37ZXPNng77N7J79neaa5pqqkzjh9fbGv1LUnWV/etZ12Cfp/U3fzDXjDjOdvySVFZpP554\nmT3Aerrs79FjGbeFAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBG\nuAIA4IxwBQDAGb2FS0how38AQGkpmXAt1R1uhppcxt58O5+zNZSPBjTHj0RL9yZKJGI/nmKJR+1v\n4VQiZa5p7tpvrqnvrDTXxCK210E8Zn/dpLt7zTUh9rV1m2sqKxPmmmwmZ66JJ+3nrbtIjftDNiLo\n6bavrXlHu7nGonSvaAAAfEwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABnhCsAAM4IVwAA\nnBGuAAA4I1wBAHBWMr2FQ5rW048YAFCKSiZch5KQ0A/55qKsscFcIzWbK/J5a+N++w2R8ip7w/LE\nXvs8leX2edrTPeaa8oR9nsqkvaH+cTVN5pqKgMb9tWUV5poQqUThL0mpsljB55DCNnyIJexriyXs\n7wPjW1qSFI/b54kG1IQ04bduLiJJ2Z7CbuDAbWEAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCA\nM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4KxkGvezw41dbzptrsl22muszcSjUfv3bLGA\nBt9VVUlzTXfG3qy7vsre6L43oJF4POC8JeP2Ru+ZrP0chGxEUJuyn7eOTMY0flhNuXmOdHfA8ady\n5pqQDQJ6A5rJ90TtGwSkKuyX/kzafg5yAceTqAjYXGNvl7nGuiGJFZ9cAQBwRrgCAOCMcAUAwBnh\nCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4IxwBQDAGeEKAICzkmncf6zradtvrokm\n7Q2uYwE1SWPj+p7ObvMcFXX2Ju/dnT3mmkTS3kxdAQ2+mzorzDXp7qy5pj3gHLTst2/ekIgFnLcA\ntcbNGEJ6r49sqjTXVFbbN4lob7O/D0acWGeuiQW8pqMBG2XUROwbBASUKGrcKESSEuX261o0YMMD\n0/MX9NkBADgGEa4AADgjXAEAcEa4AgDgjHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNc\nAQBwRrgCAOCMxv0lom7Cp4syT8f2reaaWLmtqX6ux95Mvu2tXeaaURPKzTU9HRlzTTZjb6jf02Wv\nicbsjcR7unvNNTv+d5+5Jh6wtlhAc/hsT840vqq2zDxHb4/9nNV9otpcU9Vof32WN9g3fEjW2OeJ\nJuyX/mjSXlM+qslc05u2byyRy9ivOZHoO+YaCz65AgDgjHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcA\nAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABnkXw+nx/sRWBoaX39ZXNNNJkw12Ra7A3o\nc1l70/ZEQUPDAAAGmUlEQVTuvfvNNfmc/W0VK7M3Ru9uszc5b91uP28hQq4suaytcX8iZT9nZZX2\n11rI17NmdJ25JlFl2yRDkqr+ZIy5pntvs7kmH/DekaTG084MqrMI2ZCk453/M9eMOHvGgMfyyRUA\nAGeEKwAAzghXAACcEa4AADgjXAEAcEa4AgDgjHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJzZG3Pi\nmLNn/W9N4+OVFQVaCYCPG2uv8WxHp3mO8lFN5ppCI1zhLlFTHVRXOXqsabw19CWpp83+xg1p2h4i\nZJ54QLP//S32Zv+pCnuz+0gkYq5JlMVM4zNdWfMcISrq7A313/ztH8w1E849xVzTsW2HuSbX3WOu\niZbZXwPJ2rBrgVVPm31zja732gqwkj/itjAAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4IxwBQDAGeEK\nAIAzwhUAAGeEKwAAzghXAACcEa4AADiL5PP54jROBZx1bN8aVGftYRyi7c3Xgupqxk0s+Dx7Nv3e\nXKOAPsHJyjJzTcd7th6xIf2YY0lb/2JJSlQkzTXlw+x9dbtbOsw1knT8BeeZxoe8d7r3NptrJKlh\n8rSgOgvr5gCSFE3aeyVb3p98cgUAwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA\n4IxwBQDAGeEKAIAzwhUAAGfxwV4AAOCj2bP+t6bx5aOaCrSSjy60L3epIVzxsVWMBvyhrA34izlP\npmWfuSaXyZprYil7s/tkfaWtIKBxf09H2lyTqC4312Ra7U34q04YYa7JZXrMNUNNNJkwvxdCmv1b\ncFsYAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4IxwBQDAGeEKAIAzwhUAAGeEKwAAzghXAACc\n0VsYAFAwHdu3FmWeQvcKtiJcgWNMT3uXuSZRZW9cn8/lzDWp4Q3mGqvYvv3mmt50xlyTrDNuQiAp\nXllhrlGlfQOHkCAqayz810aSYqmUuaanLeBr2mXfwMGC28IAADgjXAEAcEa4AgDgjHAFAMAZ4QoA\ngDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCM3sL42AptCF45emxJzhOiWE3RUdp4HZQe\nwhU4xpQ11NhrApu2F/objObN6801sXJ7Y/iQmvS7zfZ5AprWh0jUVJu/Nruf+3XQXE2fPSeortDa\n3nytoM/PbWEAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4\nI1wBAHBGb2Ecc2hyXjwh57oYGx6gePas/625Zti06QVYSXERrvjYCrkIl/IONyFC1tW9195QvlTF\nKyuKNlfNuImm8c099k0FQr420UTCXBMipAF/SLAWSy7TU9Dn57YwAADOCFcAAJwRrgAAOCNcAQBw\nRrgCAOCMcAUAwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4o7cwAKCkDIVm/4Qrjiml2oC/mMoa\nG4o2V6HPt7WZfjFlO9Pmmsoxx5lretP2eYolJPCK1ey/t6uw543bwgAAOCNcAQBwRrgCAOCMcAUA\nwBnhCgCAM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4IzewgA+tjq2bx3sJRwzSv1ct77+\n8mAv4QCEK4ABYdMDm2RtdVHmiaVSRZmnWMpHNZlfayHBGonHzDUW3BYGAMAZ4QoAgDPCFQAAZ4Qr\nAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABn9BYGMCBtb75mrqkZN7EAK4GH\nvRtfNI1PNQ0v0EoO1bx5vWl8NJEo0ErCEa7AMaY3nR7sJbgJ2UzAeuGWpLLGBnNNiK6du801uUzW\nXBNLJc01+998x1wTr7RvKhBN2oMyUWPfJGHns5vNNQ2Tpw14LLeFAQBwRrgCAOCMcAUAwBnhCgCA\nM8IVAABnhCsAAM4IVwAAnBGuAAA4I1wBAHBGuAIA4IxwBQDAWSSfz+cHexEAAAwlfHIFAMAZ4QoA\ngDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwBnhCgCAM8IVAABnhCsAAM4IVwAA\nnBGuAAA4I1wBAHBGuAIA4IxwBQDAGeEKAIAzwhUAAGeEKwAAzghXAACcEa4AADgjXAEAcEa4AgDg\njHAFAMAZ4QoAgDPCFQAAZ4QrAADOCFcAAJwRrgAAOCNcAQBwRrgCAOCMcAUAwNn/B8rMpLes56TN\nAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10ac7bda0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import seaborn as sns\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"grid = np.zeros((33,33))\n",
"for v, i, j in tuples:\n",
" grid[i+16, j+16] = v\n",
"grid[16,16] = 0\n",
"plt.axis('off')\n",
"plt.title('log count for alpha in Q3')\n",
"sns.heatmap(np.log2(grid[::-1].clip(1)),cbar=False,square=True, mask=grid[::-1]<=1);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [conda root]",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.