Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
person_detection_webcam_tensorflow.py
import os
import cv2
import time
import argparse
import multiprocessing
import numpy as np
import tensorflow as tf
from cam_utils import FPS, WebcamVideoStream
from multiprocessing import Queue, Pool
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
CWD_PATH = os.getcwd()
# Path to frozen detection graph. This is the actual model that is used for the object detection.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
PATH_TO_CKPT = os.path.join(CWD_PATH, MODEL_NAME, 'frozen_inference_graph.pb')
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join(CWD_PATH, 'data', 'mscoco_label_map_nl.pbtxt')
NUM_CLASSES = 90
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(image_np, sess, detection_graph):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run([boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
boxes = np.squeeze(boxes) # list of floats less than .99
scores = np.squeeze(scores) # list of floats less than .99
classes = np.squeeze(classes) # list of ints 1s and 0
indices = np.argwhere(classes == 1)
boxes = np.squeeze(boxes[indices])
scores = np.squeeze(scores[indices])
classes = np.squeeze(classes[indices])
#print(boxes)
#print(scores)
#print(classes)
print(sum(scores > 0.66)) # counts how many persons detected in frame
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
boxes,
classes.astype(np.int32),
scores,
category_index,
use_normalized_coordinates=True,
line_thickness=8)
return image_np
def worker(input_q, output_q):
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
fps = FPS().start()
while True:
fps.update()
frame = input_q.get()
output_q.put(detect_objects(frame, sess, detection_graph))
fps.stop()
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-src', '--source', dest='video_source', type=int,
default=0, help='Device index of the camera.')
parser.add_argument('-wd', '--width', dest='width', type=int,
default=480, help='Width of the frames in the video stream.')
parser.add_argument('-ht', '--height', dest='height', type=int,
default=360, help='Height of the frames in the video stream.')
parser.add_argument('-num-w', '--num-workers', dest='num_workers', type=int,
default=2, help='Number of workers.')
parser.add_argument('-q-size', '--queue-size', dest='queue_size', type=int,
default=5, help='Size of the queue.')
args = parser.parse_args()
logger = multiprocessing.log_to_stderr()
logger.setLevel(multiprocessing.SUBDEBUG)
input_q = Queue(maxsize=args.queue_size)
output_q = Queue(maxsize=args.queue_size)
pool = Pool(args.num_workers, worker, (input_q, output_q))
#print(args.video_source)
#print(args.width)
#print(args.height)
video_capture = WebcamVideoStream(src=args.video_source,
width=args.width,
height=args.height).start()
fps = FPS().start()
while True: # fps._numFrames < 120
frame = video_capture.read()
input_q.put(frame)
t = time.time()
#print(output_q.get())
cv2.imshow('Video', output_q.get())
fps.update()
print('[INFO] elapsed time: {:.2f}'.format(time.time() - t))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
fps.stop()
print('[INFO] elapsed time (total): {:.2f}'.format(fps.elapsed()))
print('[INFO] approx. FPS: {:.2f}'.format(fps.fps()))
pool.terminate()
video_capture.stop()
cv2.destroyAllWindows()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.