Skip to content

Embed URL

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Haskell Hoodlums applicative parser exercise
module Expressions where
import Data.Maybe
import Data.Char
import Text.Printf
import Control.Applicative
data Expr = Term Int | Op Operator Expr Expr | Var String
deriving (Show, Eq)
data Operator = Sum | Mult | Sub | Div
deriving (Show, Eq)
data Result a = Failure [String] | Success a
deriving (Show, Eq)
instance Functor Result where
fmap f (Success a) = Success (f a)
fmap _ (Failure es) = Failure es
instance Applicative Result where
pure v = Success v
(Success f) <*> (Success x) = Success (f x)
(Failure xs) <*> (Failure ys) = Failure $ xs ++ ys
(Failure xs) <*> _ = Failure xs
_ <*> (Failure ys) = Failure ys
foldExpr :: (Int -> a) -> (Operator -> a -> a -> a) -> (String -> a) -> Expr -> a
foldExpr ft _ _ (Term i) = ft i
foldExpr ft fo fv (Op o u v) = fo o (foldExpr ft fo fv u) (foldExpr ft fo fv v)
foldExpr ft fo fv (Var id) = fv id
eval :: [(String, Int)] -> Expr -> Result Int
eval env = foldExpr Success applyOp getV
where
getV x = maybe (Failure [x]) Success $ lookup x env
applyOp :: Operator -> Result Int -> Result Int -> Result Int
applyOp o x y = getOp o <$> x <*> y
getOp :: Operator -> Int -> Int -> Int
getOp o = case o of
Sum -> (+)
Mult -> (*)
Sub -> (-)
Div -> div
printExpr :: Expr -> String
printExpr = foldExpr show (flip (printf "(%s %s %s)") . printOp) id
printOp o = case o of
Sum -> "+"
Mult -> "*"
Sub -> "-"
Div -> "/"
countTerms :: Expr -> Int
countTerms = foldExpr (const 1) (const (+)) (const 1)
sample = Op Mult (Op Sum (Var "x") (Var "y")) (Term 4)
---------
-- Parser
---------
newtype Parser a = Parser {runParser :: String -> Maybe (a, String)}
instance Functor Parser where
{- fmap f (Parser pa) = Parser $ \s -> case pa s of -}
{- Nothing -> Nothing -}
{- Just (a, s') -> Just (f a, s') -}
fmap f (Parser pa) = Parser $ \s -> (\(a, s') -> (f a, s')) <$> pa s
instance Applicative Parser where
pure x = Parser $ \s -> Just (x, s)
{- (Parser pf) <*> (Parser pa) = Parser $ \s -> case pf s of -}
{- Nothing -> Nothing -}
{- Just (f, s') -> case pa s' of -}
{- Nothing -> Nothing -}
{- Just (a, s'') -> Just (f a, s'') -}
Parser pf <*> parserA = Parser $ \s -> pf s >>= \(f, s') -> runParser (f <$> parserA) s'
instance Alternative Parser where
-- empty :: f a
empty = Parser $ \s -> Nothing
-- (<|>) :: f a -> f a -> f a
Parser pa <|> Parser pb = Parser $ \s -> maybe (pb s) Just (pa s)
anyCharP :: Parser Char
anyCharP = Parser p
where
p [] = Nothing
p (x : xs) = Just (x, xs)
combP :: (a -> b -> c) -> Parser a -> Parser b -> Parser c
combP f pa pb = f <$> pa <*> pb
predP :: (Char -> Bool) -> Parser Char
predP pred = Parser $ \s -> case runParser anyCharP s of
Just (c, s') -> if pred c then Just (c, s') else Nothing
Nothing -> Nothing
charP :: Char -> Parser Char
charP c = predP (c==)
blankP :: Parser String
blankP = many (predP isSpace)
tokenP :: Parser a -> Parser a
tokenP p = blankP *> p <* blankP
termP :: Parser Expr
termP = Term . read <$> some (predP isDigit)
varP :: Parser Expr
varP = Var <$> some (predP isAlpha)
sumOpP :: Parser Operator
sumOpP = const Sum <$> charP '+'
multOpP :: Parser Operator
multOpP = const Mult <$> charP '*'
subOpP :: Parser Operator
subOpP = const Sub <$> charP '-'
divOpP :: Parser Operator
divOpP = const Div <$> charP '/'
anyOpP :: Parser Operator
anyOpP = sumOpP <|> subOpP <|> multOpP <|> divOpP
combOpP l o r = flip Op <$> l <*> o <*> r
opP :: Parser Expr
opP = combOpP exprP (tokenP anyOpP) exprP
exprP :: Parser Expr
exprP = tokenP termP <|> tokenP varP <|> tokenP (charP '(' *> opP <* charP ')')
-------------
-- Precedence
-------------
leafP = tokenP termP <|> tokenP varP
-- Same precedence
exprP' :: Parser Expr
exprP' = combOpP leafP (tokenP anyOpP) exprP' <|> leafP
-- Different precedence
highP = combOpP leafP (tokenP (multOpP <|> divOpP)) highP <|> leafP
lowP = combOpP highP (tokenP (sumOpP <|> subOpP)) lowP <|> highP
-- Different and brackets
nodeP' = leafP <|> tokenP (charP '(' *> lowP' <* charP ')')
highP' = combOpP nodeP' (tokenP (multOpP <|> divOpP)) highP' <|> nodeP'
lowP' = combOpP highP' (tokenP (sumOpP <|> subOpP)) lowP' <|> highP'
tests = [ "(123+(1*(2/x)))"
, "(123 + (1 * (2/x)))"
, "( 123 + (1 * (2/ x) )) "
, "123+1*2/x"
, "123 + 1 * 2 / x"]
answer = Op Sum (Term 123) (Op Mult (Term 1) (Op Div (Term 2) (Var "x")))
test p ss = map assess $ zip ss (map (runParser p) ss)
where assess (s, Just (e, s')) = (s, Just e, e == answer)
assess (s, Nothing) = (s, Nothing, False)
main = putStrLn $ unlines $ map fmt (test lowP' tests)
where fmt (s, r, a) = printf "%30s -> %80s -> %5s" s (show r) (show a)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.