Skip to content

Instantly share code, notes, and snippets.

@chutten
Last active April 12, 2016 16:19
Show Gist options
  • Save chutten/e2698005f78a5175de4ef9ce23671bef to your computer and use it in GitHub Desktop.
Save chutten/e2698005f78a5175de4ef9ce23671bef to your computer and use it in GitHub Desktop.
e10s_experiment
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
# coding: utf-8
# ### e10s-beta46-noapz: MEMORY_TOTAL analysis
# In[1]:
import ujson as json
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import plotly.plotly as py
import IPython
from __future__ import division
from moztelemetry.spark import get_pings, get_one_ping_per_client, get_pings_properties
from montecarlino import grouped_permutation_test
get_ipython().magic(u'pylab inline')
IPython.core.pylabtools.figsize(16, 7)
# In[2]:
sc.defaultParallelism
# In[19]:
def chi2_distance(xs, ys, eps = 1e-10, normalize = True):
histA = xs.sum(axis=0)
histB = ys.sum(axis=0)
if normalize:
histA = histA/histA.sum()
histB = histB/histB.sum()
d = 0.5 * np.sum([((a - b) ** 2) / (a + b + eps)
for (a, b) in zip(histA, histB)])
return d
def median_diff(xs, ys):
return np.median(xs) - np.median(ys)
def compare_histogram(histogram, e10s, none10s):
# Normalize individual histograms
e10s = e10s.map(lambda x: x/x.sum())
none10s = none10s.map(lambda x: x/x.sum())
e10s = e10s.map(lambda x: x[x.index > 75 * 1024]).map(lambda x: x[x.index < 2048 * 1024])
none10s = none10s.map(lambda x: x[x.index > 75 * 1024]).map(lambda x: x[x.index < 2048 * 1024])
pvalue = grouped_permutation_test(chi2_distance, [e10s, none10s], num_samples=100)
eTotal = e10s.sum()
nTotal = none10s.sum()
eTotal = 100*eTotal/eTotal.sum()
nTotal = 100*nTotal/nTotal.sum()
fig = plt.figure()
fig.subplots_adjust(hspace=0.3)
ax = fig.add_subplot(1, 1, 1)
ax2 = ax.twinx()
width = 0.4
ylim = max(eTotal.max(), nTotal.max())
eTotal.plot(kind="bar", alpha=0.5, color="green", label="e10s", ax=ax, width=width, position=0, ylim=(0, ylim + 1))
nTotal.plot(kind="bar", alpha=0.5, color="blue", label="non e10s", ax=ax2, width=width, position=1, grid=False, ylim=ax.get_ylim())
ax.legend(ax.get_legend_handles_labels()[0] + ax2.get_legend_handles_labels()[0],
["e10s ({} samples".format(len(e10s)), "non e10s ({} samples)".format(len(none10s))])
# If there are more than 100 labels, hide every other one so we can still read them
if len(ax.get_xticklabels()) > 100:
for label in ax.get_xticklabels()[::2]:
label.set_visible(False)
plt.title(histogram)
plt.xlabel(histogram)
plt.ylabel("Frequency %")
plt.show()
print "The probability that the distributions for {} are differing by chance is {:.2f}.".format(histogram, pvalue)
def normalize_uptime_hour(frame):
frame = frame[frame["payload/simpleMeasurements/uptime"] > 0]
frame = 60 * frame.apply(lambda x: x/frame["payload/simpleMeasurements/uptime"]) # Metric per hour
frame.drop('payload/simpleMeasurements/uptime', axis=1, inplace=True)
return frame
def compare_count_histograms(pings, *histograms_names):
properties = histograms_names + ("payload/simpleMeasurements/uptime", "e10s")
frame = pd.DataFrame(get_pings_properties(pings, properties).collect())
e10s = frame[frame["e10s"] == True]
e10s = normalize_uptime_hour(e10s)
none10s = frame[frame["e10s"] == False]
none10s = normalize_uptime_hour(none10s)
for histogram in e10s.columns:
if histogram == "e10s" or histogram.endswith("_parent") or histogram.endswith("_children"):
continue
compare_scalars(histogram + " per hour", e10s[histogram].dropna(), none10s[histogram].dropna())
def compare_histograms(pings, *histogram_names):
frame = pd.DataFrame(get_pings_properties(pings, histogram_names + ("e10s",) , with_processes=True).collect())
e10s = frame[frame["e10s"] == True]
none10s = frame[frame["e10s"] == False]
for histogram in none10s.columns:
if histogram == "e10s" or histogram.endswith("_parent") or histogram.endswith("_children"):
continue
has_children = np.sum(e10s[histogram + "_children"].notnull()) > 0
has_parent = np.sum(e10s[histogram + "_parent"].notnull()) > 0
if has_children and has_parent:
compare_histogram(histogram + " (parent + children)", e10s[histogram].dropna(), none10s[histogram].dropna())
if has_parent:
compare_histogram(histogram + " (parent)", e10s[histogram + "_parent"].dropna(), none10s[histogram].dropna())
if has_children:
compare_histogram(histogram + " (children)", e10s[histogram + "_children"].dropna(), none10s[histogram].dropna())
def compare_scalars(metric, *groups):
print "Median difference in {} is {:.2f}, ({:.2f}, {:.2f}).".format(metric,
median_diff(*groups),
np.median(groups[0]),
np.median(groups[1]))
print "The probability of this effect being purely by chance is {:.2f}.". format(grouped_permutation_test(median_diff, groups, num_samples=10000))
# #### Get e10s and non-e10s partitions
# In[4]:
dataset = sqlContext.read.load("s3://telemetry-parquet/e10s_experiment/e10s_beta46_cohorts/v20160405", "parquet")
# What are the branches, and how many clients do we have in each branch?
# In[5]:
dataset.select("e10sCohort").distinct().take(50)
# In[6]:
dataset.filter(dataset["e10sCohort"] == "test").count()
# In[7]:
dataset.filter(dataset["e10sCohort"] == "control").count()
# Sample by clientId; `sampled` is a small sample suitable for most measures, while `big_sampled` is a bigger sample used for when the small sample isn't statistically significant enough (such as for the slow script measures):
# In[8]:
sampled = dataset.filter(dataset.sampleId <= 6).filter((dataset.e10sCohort == "test") | (dataset.e10sCohort == "control"))
big_sampled = dataset.filter(dataset.sampleId <= 50).filter((dataset.e10sCohort == "test") | (dataset.e10sCohort == "control"))
# In[9]:
sampled.count(), big_sampled.count()
# How many clients have a mismatching e10s cohort?
# In[10]:
def e10s_status_mismatch(row):
branch_status = True if row.e10sCohort == "test" else False
e10sEnabled = json.loads(row.settings)["e10sEnabled"]
return (row.e10sCohort, branch_status != e10sEnabled)
# In[11]:
sampled.rdd.map(e10s_status_mismatch).reduceByKey(lambda x, y: x + y).collect()
# Transform Dataframe to RDD of pings
# In[29]:
def row_2_ping(row):
ping = {"payload": {"simpleMeasurements": json.loads(row.simpleMeasurements) if row.simpleMeasurements else {},
"histograms": json.loads(row.histograms) if row.histograms else {},
"keyedHistograms": json.loads(row.keyedHistograms) if row.keyedHistograms else {},
"childPayloads": json.loads(row.childPayloads) if row.childPayloads else {},
"threadHangStats": json.loads(row.threadHangStats)} if row.threadHangStats else {},
"e10s": True if row.e10sCohort == "test" else False,
"os": json.loads(row.system).get("os", {}).get("name", None)}
return ping
# In[35]:
subset = sampled.rdd.map(row_2_ping)
big_subset = big_sampled.rdd.map(row_2_ping)
# ## Memory
# In[26]:
IPython.core.pylabtools.figsize(20, 18)
# In[22]:
compare_histograms(subset, "payload/histograms/MEMORY_TOTAL")
# ### Windows-only
# In[31]:
compare_histograms(subset.filter(lambda p: p["os"] == "Windows_NT"), "payload/histograms/MEMORY_TOTAL")
# ### Mac-only
# In[36]:
compare_histograms(big_subset.filter(lambda p: p["os"] == "Darwin"), "payload/histograms/MEMORY_TOTAL")
# ### Linux-only
# In[37]:
compare_histograms(big_subset.filter(lambda p: p["os"] == "Linux"), "payload/histograms/MEMORY_TOTAL")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment