Skip to content

Instantly share code, notes, and snippets.

@ckholmes5
Created September 5, 2016 22:33
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
Embed
What would you like to do?
m_gbm_0 = train(x=df_0, y=labels_0,
method="gbm", weights = weight_0,
verbose=TRUE, trControl=ctrl, metric="AMS")
m_gbm_1 = train(x=df_1, y=labels_1,
method="gbm", weights=weight_1,
verbose=TRUE, trControl=ctrl, metric="AMS")
m_gbm_2 = train(x=df_2, y=labels_2,
method="gbm", weights=weight_2,
verbose=TRUE, trControl=ctrl, metric="AMS")
m_gbm_3 = train(x=df_3, y=labels_3,
method="gbm", weights=weight_3,
verbose=TRUE, trControl=ctrl, metric="AMS")
gbmTrainPred_0 <- predict(m_gbm_0, newdata=df_0, type="prob")
gbmTrainPred_1 <- predict(m_gbm_1, newdata=df_1, type="prob")
gbmTrainPred_2 <- predict(m_gbm_2, newdata=df_2, type="prob")
gbmTrainPred_3 <- predict(m_gbm_3, newdata=df_3, type="prob")
After this, we determined the ideal threshold over which to predict our gbm model. The ideal thresholds were different for each data frame, and we accounted for these accordingly. An example output plot for deterimining the threshold can be seen below.
auc_0 = roc(labels_0_n, gbmTrainPred_0[,2])
auc_1 = roc(labels_1_n, gbmTrainPred_1[,2])
auc_2 = roc(labels_2_n, gbmTrainPred_2[,2])
auc_3 = roc(labels_3_n, gbmTrainPred_3[,2])
plot(auc_0, print.thres=TRUE)
plot(auc_1, print.thres=TRUE)
plot(auc_2, print.thres=TRUE)
plot(auc_3, print.thres=TRUE)
threshold_0 <- 0.001
threshold_1 <- 0.002
threshold_2 <- 0.006
threshold_3 <- 0.005
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment