Created
September 5, 2016 22:33
-
-
Save ckholmes5/5ed28ff3c3d3671cc43546dc05c1918c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
m_gbm_0 = train(x=df_0, y=labels_0, | |
method="gbm", weights = weight_0, | |
verbose=TRUE, trControl=ctrl, metric="AMS") | |
m_gbm_1 = train(x=df_1, y=labels_1, | |
method="gbm", weights=weight_1, | |
verbose=TRUE, trControl=ctrl, metric="AMS") | |
m_gbm_2 = train(x=df_2, y=labels_2, | |
method="gbm", weights=weight_2, | |
verbose=TRUE, trControl=ctrl, metric="AMS") | |
m_gbm_3 = train(x=df_3, y=labels_3, | |
method="gbm", weights=weight_3, | |
verbose=TRUE, trControl=ctrl, metric="AMS") | |
gbmTrainPred_0 <- predict(m_gbm_0, newdata=df_0, type="prob") | |
gbmTrainPred_1 <- predict(m_gbm_1, newdata=df_1, type="prob") | |
gbmTrainPred_2 <- predict(m_gbm_2, newdata=df_2, type="prob") | |
gbmTrainPred_3 <- predict(m_gbm_3, newdata=df_3, type="prob") | |
After this, we determined the ideal threshold over which to predict our gbm model. The ideal thresholds were different for each data frame, and we accounted for these accordingly. An example output plot for deterimining the threshold can be seen below. | |
auc_0 = roc(labels_0_n, gbmTrainPred_0[,2]) | |
auc_1 = roc(labels_1_n, gbmTrainPred_1[,2]) | |
auc_2 = roc(labels_2_n, gbmTrainPred_2[,2]) | |
auc_3 = roc(labels_3_n, gbmTrainPred_3[,2]) | |
plot(auc_0, print.thres=TRUE) | |
plot(auc_1, print.thres=TRUE) | |
plot(auc_2, print.thres=TRUE) | |
plot(auc_3, print.thres=TRUE) | |
threshold_0 <- 0.001 | |
threshold_1 <- 0.002 | |
threshold_2 <- 0.006 | |
threshold_3 <- 0.005 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment