View create_docker_machine.sh
$ docker-machine create --driver virtualbox --virtualbox-disk-size "32000" default |
View docker_bash.sh
$ sudo docker exec -i -t 665b4a1e17b6 /bin/bash |
View fr.sh
# Recursively find and replace in files | |
find . -name "*.txt" -print0 | xargs -0 sed -i '' -e 's/foo/bar/g' |
View AwsLogsClient.java
public class AwsLogQuery { | |
private final static Logger logger = LoggerFactory.getLogger(AwsLogQuery.class); | |
// use the role of the lambda to determine policy. | |
protected static final AWSCredentialsProvider CREDENTIALS_PROVIDER = | |
new DefaultAWSCredentialsProviderChain(); | |
public static void main(String[] args){ | |
long startTime = 1476119058044l; | |
long endTime = 1476119159726l; |
View tensorfow_gpu.txt
clay@freekbox ~/data/nvidia $ python ./test1.py | |
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcublas.so.8.0 locally | |
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcudnn.so locally | |
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcufft.so.8.0 locally | |
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcuda.so.1 locally | |
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcurand.so.8.0 locally | |
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero | |
I tensorflow/core/common_runtime/gpu/gpu_device.cc:951] Found device 0 with properties: | |
name: GeForce GTX 1060 6GB | |
major: 6 minor: 1 memoryClockRate (GHz) 1.7085 |
View cuda8_installed.txt
clay@freekbox ~/data/nvidia/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release $ ./deviceQuery | |
./deviceQuery Starting... | |
CUDA Device Query (Runtime API) version (CUDART static linking) | |
Detected 1 CUDA Capable device(s) | |
Device 0: "GeForce GTX 1060 6GB" | |
CUDA Driver Version / Runtime Version 8.0 / 8.0 | |
CUDA Capability Major/Minor version number: 6.1 |
View mongo1.py
%matplotlib inline | |
import matplotlib | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from pymongo import MongoClient | |
from bson.objectid import ObjectId | |
import dateutil.parser | |
start_date_str = "2015-04-25T07:00:00Z" |
View ribbon.html
<script> | |
var node = document.createElement("div"); | |
node.innerHTML = '<a href="https://github.com/claytantor/blueweave"><img style="position: absolute; top: 50px; right: 0; border: 0;" src="https://camo.githubusercontent.com/365986a132ccd6a44c23a9169022c0b5c890c387/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f7265645f6161303030302e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_red_aa0000.png"></a>'; | |
document.getElementsByTagName('body')[0].appendChild(node); | |
</script> |
View UCISequenceClassificationExampleToo_1.java
// ----- Train the network, evaluating the test set performance at each epoch ----- | |
int nEpochs = 400; | |
for (int i = 0; i < nEpochs; i++) { | |
net.fit(trainData); | |
trainData.reset(); | |
} | |
//Evaluate on the test set: | |
List<String> labels = new ArrayList<>(); |
View NDArrayUtils.java
package org.deeplearning4j.examples.util; | |
import com.fasterxml.jackson.databind.ObjectMapper; | |
import org.nd4j.linalg.api.ndarray.INDArray; | |
import org.nd4j.linalg.string.NDArrayStrings; | |
import java.io.IOException; | |
import java.util.List; | |