Skip to content

Instantly share code, notes, and snippets.

@daaronr
Last active December 15, 2022 21:23
Show Gist options
  • Save daaronr/bebe538e3ab66208f24c39fc383d6617 to your computer and use it in GitHub Desktop.
Save daaronr/bebe538e3ab66208f24c39fc383d6617 to your computer and use it in GitHub Desktop.
```{r}
library(readr)
gifts_2022_12_15_2017 <- read_csv("~/Downloads/gifts_2022-12-15_2017.csv")
Downloaded from link in https://yieldgiving.com/gifts/?sorting=az
```
```{r}
# Load the stringr package
library(stringr)
# Create a string containing the abbreviations for all US states
state_abbrevs <- str_c(c("AK", "AL", "AR", "AS", "AZ", "CA", "CO", "CT", "DC", "DE", "FL", "GA", "GU", "HI", "IA", "ID",
"IL", "IN", "KS", "KY", "LA", "MA", "MD", "ME", "MI", "MN", "MO", "MP", "MS", "MT", "NC", "ND",
"NE", "NH", "NJ", "NM", "NV", "NY", "OH", "OK", "OR", "PA", "PR", "RI", "SC", "SD", "TN", "TX",
"UM", "UT", "VA", "VI", "VT", "WA", "WI", "WV", "WY", "US", "United States"), collapse = "|")
# Use the str_detect() function to detect whether each row in the "ORG-REPORTED GEOGRAPHIES OF SERVICE" column
# contains any of the state abbreviations
gifts_2022_12_15_2017 %<>%
mutate(
in_usa = str_detect(`Org-reported geographies of service`, state_abbrevs),
don_amount = as.numeric(str_extract(`Gift Amount`, "[0-9]+"))
)
sum_don_by_year_USA <- gifts_2022_12_15_2017 %>%
group_by(`Gift Year`, in_usa) %>%
summarise(total_amount = sum(don_amount/1000000, na.rm=TRUE)) %>%
pivot_wider(names_from = in_usa, values_from = total_amount) %>%
rename("Serves USA" = "TRUE",
"Abroad, not USA" = "FALSE") %>%
kable(digits=1, caption = "MacKenzie Scott donations by year and charity-geography") %>%
kable_styling
(
largest_don <-
gifts_2022_12_15_2017 %>% arrange(-don_amount) %>%
mutate(`Don in millions`= don_amount/1000000) %>%
select(Organization, `Gift Year`, `Don in millions`, `Org-reported geographies of service`) %>%
.kable(digits=1, format.args = list(big.mark = ""), caption = "MacKenzie Scott largest donations") %>%
.kable_styling
)
(
largest_don_collapse_year <-
gifts_2022_12_15_2017 %>%
group_by(Organization) %>%
summarise(total_amount = sum(don_amount/1000000, na.rm=TRUE)) %>%
arrange(-total_amount) %>%
.kable(digits=1, format.args = list(big.mark = ""), caption = "MacKenzie Scott largest donations across years") %>%
.kable_styling
)
```
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment