-
-
Save danijar/8663d3bbfd586bffecf6a0094cd116f2 to your computer and use it in GitHub Desktop.
# Working example for my blog post at: | |
# https://danijar.github.io/structuring-your-tensorflow-models | |
import functools | |
import tensorflow as tf | |
from tensorflow.examples.tutorials.mnist import input_data | |
def doublewrap(function): | |
""" | |
A decorator decorator, allowing to use the decorator to be used without | |
parentheses if no arguments are provided. All arguments must be optional. | |
""" | |
@functools.wraps(function) | |
def decorator(*args, **kwargs): | |
if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): | |
return function(args[0]) | |
else: | |
return lambda wrapee: function(wrapee, *args, **kwargs) | |
return decorator | |
@doublewrap | |
def define_scope(function, scope=None, *args, **kwargs): | |
""" | |
A decorator for functions that define TensorFlow operations. The wrapped | |
function will only be executed once. Subsequent calls to it will directly | |
return the result so that operations are added to the graph only once. | |
The operations added by the function live within a tf.variable_scope(). If | |
this decorator is used with arguments, they will be forwarded to the | |
variable scope. The scope name defaults to the name of the wrapped | |
function. | |
""" | |
attribute = '_cache_' + function.__name__ | |
name = scope or function.__name__ | |
@property | |
@functools.wraps(function) | |
def decorator(self): | |
if not hasattr(self, attribute): | |
with tf.variable_scope(name, *args, **kwargs): | |
setattr(self, attribute, function(self)) | |
return getattr(self, attribute) | |
return decorator | |
class Model: | |
def __init__(self, image, label): | |
self.image = image | |
self.label = label | |
self.prediction | |
self.optimize | |
self.error | |
@define_scope(initializer=tf.contrib.slim.xavier_initializer()) | |
def prediction(self): | |
x = self.image | |
x = tf.contrib.slim.fully_connected(x, 200) | |
x = tf.contrib.slim.fully_connected(x, 200) | |
x = tf.contrib.slim.fully_connected(x, 10, tf.nn.softmax) | |
return x | |
@define_scope | |
def optimize(self): | |
logprob = tf.log(self.prediction + 1e-12) | |
cross_entropy = -tf.reduce_sum(self.label * logprob) | |
optimizer = tf.train.RMSPropOptimizer(0.03) | |
return optimizer.minimize(cross_entropy) | |
@define_scope | |
def error(self): | |
mistakes = tf.not_equal( | |
tf.argmax(self.label, 1), tf.argmax(self.prediction, 1)) | |
return tf.reduce_mean(tf.cast(mistakes, tf.float32)) | |
def main(): | |
mnist = input_data.read_data_sets('./mnist/', one_hot=True) | |
image = tf.placeholder(tf.float32, [None, 784]) | |
label = tf.placeholder(tf.float32, [None, 10]) | |
model = Model(image, label) | |
sess = tf.Session() | |
sess.run(tf.initialize_all_variables()) | |
for _ in range(10): | |
images, labels = mnist.test.images, mnist.test.labels | |
error = sess.run(model.error, {image: images, label: labels}) | |
print('Test error {:6.2f}%'.format(100 * error)) | |
for _ in range(60): | |
images, labels = mnist.train.next_batch(100) | |
sess.run(model.optimize, {image: images, label: labels}) | |
if __name__ == '__main__': | |
main() |
I got that part! But I have another question now - Is it possible to define the attributes such as "optimize" in another file that imports this class? If yes, how? Thanks.
Hello, I changed the code a little bit.
I want to change the cost function dynamically in each iteration, the code is here https://github.com/jren2017/accessAccuracyFromLossFunc/blob/master/from_gist_example.py
I want to access the error of last iteration, use the error to calculate the cross-entropy, this sounds weird, but just an example.
Hope you can help have a look.
changed 65th row of the code:
logprob = tf.log(self.prediction + 1e-12) *(1-current_error) #Here changed ????????????
I get the error message below when I run the example. How do I fix it? It appears to be missing the _gru_ops library.
Great article. Thank you.
File "C:\ProgramData\Anaconda3\envs\TensorFlow\lib\site-packages\tensorflow\python\framework\load_library.py", line 56, in load_op_library
lib_handle = py_tf.TF_LoadLibrary(library_filename)
NotFoundError: C:\ProgramData\Anaconda3\envs\TensorFlow\lib\site-packages\tensorflow\contrib\rnn\python\ops_gru_ops.so not found
Thanks for this gist @danijar Could you please explain how the feed_dict in line 87 (or any similar line) works? Are the feed_dict keys same as the args in init ? Thanks.