-
-
Save databento-bot/5f80501873d80e7acba9c78726d4bfe1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import databento as db | |
import pandas as pd | |
client = db.Historical() | |
def rank_by_volume(top=500): | |
""" | |
Returns instrument IDs of instruments that traded most, in descending rank | |
""" | |
data = client.timeseries.get_range( | |
dataset='GLBX.MDP3', | |
symbols='ALL_SYMBOLS', | |
schema='ohlcv-1d', | |
start='2023-08-15', | |
end='2023-08-15' | |
) | |
df = data.to_df() | |
return df.sort_values(by='volume', ascending=False).instrument_id.tolist()[:top] | |
def get_symbol_mappings(instrument_id_list): | |
""" | |
Fetch raw symbols and tick sizes of specified instrument IDs | |
""" | |
data = client.timeseries.get_range( | |
dataset='GLBX.MDP3', | |
stype_in='instrument_id', | |
symbols=instrument_id_list, | |
schema='definition', | |
start='2023-08-15', | |
end='2023-08-15' | |
) | |
return data.to_df()[['instrument_id', 'raw_symbol', 'min_price_increment']] | |
def get_median_spread(instrument_id_list, metadata): | |
""" | |
Get median spread of specified instrument IDs, in descending rank | |
""" | |
data = client.timeseries.get_range( | |
dataset='GLBX.MDP3', | |
stype_in='instrument_id', | |
symbols=instrument_id_list, | |
schema='tbbo', | |
start='2023-08-15T15:00', | |
end='2023-08-15T16:00' | |
) | |
df = data.to_df().merge(metadata, on='instrument_id', how='inner') | |
df.dropna(subset=['ask_px_00', 'bid_px_00', 'ask_sz_00', 'bid_sz_00', 'min_price_increment'], inplace=True) | |
# Compute median spread at times of execution | |
spread_ranking = df.groupby(by='raw_symbol').apply(lambda r: ((r.ask_px_00 - | |
r.bid_px_00)/r.min_price_increment).median()).sort_values().apply(round) | |
touch_ranking = df.groupby(by='raw_symbol').apply(lambda r: ((r.ask_sz_00 + | |
r.bid_sz_00)/2).median()).apply(lambda x: round(x,1)) | |
ranking = pd.concat([spread_ranking, touch_ranking], axis=1) | |
ranking.columns = ['median_spread', 'median_touch'] | |
return ranking | |
volume_ranking = rank_by_volume(500) | |
metadata = get_symbol_mappings(volume_ranking) | |
spread_ranking = get_median_spread(volume_ranking, | |
metadata) | |
spread_ranking.to_csv('ranking.csv') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment