|
from langchain.memory import ConversationBufferMemory |
|
|
|
# Create a memory instance to store the conversation context. |
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
|
|
# Initialize an agent with memory integration. |
|
agent_with_memory = initialize_agent( |
|
tools=tools, |
|
llm=llm, |
|
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, |
|
verbose=True, |
|
memory=memory |
|
) |
|
|
|
# Example query using memory |
|
query_memory = "Now, using our previous conversation, calculate 2+2." |
|
response_memory = agent_with_memory.run(query_memory) |
|
print("Agent Response with Memory:", response_memory) |