Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Implementation of Fastfood (Le, Sarlos, and Smola, ICML 2013).
Primarily by @esc (Valentin Haenel) and felixmaximilian
Modified by @dougalsutherland.
FHT implementation was "inspired by"
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils import check_random_state
from sklearn.utils.random import choice
from scipy.stats import chi
from sklearn.utils import check_array
except ImportError:
from sklearn.utils import check_arrays
def check_array(*args, **kwargs):
X, = check_arrays(*args, **kwargs)
return X
# In my tests, numba was just as fast as their Cython implementation,
# and it avoids compilation if you have it installed anyway.
from numba import jit
def fht(array_):
""" Pure Python implementation for educational purposes. """
bit = length = len(array_)
for _ in xrange(int(np.log2(length))):
bit >>= 1
for i in xrange(length):
if i & bit == 0:
j = i | bit
temp = array_[i]
array_[i] += array_[j]
array_[j] = temp - array_[j]
def is_power_of_two(input_integer):
""" Test if an integer is a power of two. """
if input_integer == 1:
return False
return input_integer != 0 and ((input_integer & (input_integer - 1)) == 0)
def fht2(array_):
""" Two dimensional row-wise FHT. """
if not is_power_of_two(array_.shape[1]):
raise ValueError('Length of rows for fht2 must be a power of two')
for x in xrange(array_.shape[0]):
class Fastfood(BaseEstimator, TransformerMixin):
"""Approximates feature map of an RBF kernel by Monte Carlo approximation
of its Fourier transform.
Fastfood replaces the random matrix of Random Kitchen Sinks (RBFSampler)
with an approximation that uses the Walsh-Hadamard transformation to gain
significant speed and storage advantages. The computational complexity for
mapping a single example is O(n_components log d). The space complexity is
O(n_components). Hint: n_components should be a power of two. If this is
not the case, the next higher number that fulfills this constraint is
chosen automatically.
sigma : float
Parameter of RBF kernel: exp(-(1/(2*sigma^2)) * x^2)
n_components : int
Number of Monte Carlo samples per original feature.
Equals the dimensionality of the computed feature space.
tradeoff_mem_accuracy : "accuracy" or "mem", default: 'accuracy'
mem: This version is not as accurate as the option "accuracy",
but is consuming less memory.
accuracy: The final feature space is of dimension 2*n_components,
while being more accurate and consuming more memory.
random_state : {int, RandomState}, optional
If int, random_state is the seed used by the random number generator;
if RandomState instance, random_state is the random number generator.
See "Fastfood | Approximating Kernel Expansions in Loglinear Time" by
Quoc Le, Tamas Sarl and Alex Smola.
See scikit-learn-fastfood/examples/
for an example how to use fastfood with a primal classifier in comparison
to an usual rbf-kernel with a dual classifier.
def __init__(self,
self.sigma = sigma
self.n_components = n_components
self.random_state = random_state
self.rng = check_random_state(self.random_state)
# map to 2*n_components features or to n_components features with less
# accuracy
self.tradeoff_mem_accuracy = \
def enforce_dimensionality_constraints(d, n):
if not is_power_of_two(d):
# find d that fulfills 2^l
d = np.power(2, np.floor(np.log2(d)) + 1)
divisor, remainder = divmod(n, d)
times_to_stack_v = int(divisor)
if remainder != 0:
# output info, that we increase n so that d is a divider of n
n = (divisor + 1) * d
times_to_stack_v = int(divisor+1)
return int(d), int(n), times_to_stack_v
def pad_with_zeros(self, X):
X_padded = np.pad(X,
((0, 0),
(0, self.number_of_features_to_pad_with_zeros)),
except AttributeError:
zeros = np.zeros((X.shape[0],
X_padded = np.concatenate((X, zeros), axis=1)
return X_padded
def approx_fourier_transformation_multi_dim(result):
def l2norm_along_axis1(X):
return np.sqrt(np.einsum('ij,ij->i', X, X))
def uniform_vector(self):
if self.tradeoff_mem_accuracy != 'accuracy':
return self.rng.uniform(0, 2 * np.pi, size=self.n)
return None
def apply_approximate_gaussian_matrix(self, B, G, P, X):
""" Create mapping of all x_i by applying B, G and P step-wise """
num_examples = X.shape[0]
result = np.multiply(B, X.reshape((1, num_examples, 1, self.d)))
result = result.reshape((num_examples*self.times_to_stack_v, self.d))
result = result.reshape((num_examples, -1))
np.take(result, P, axis=1, mode='wrap', out=result)
np.multiply(np.ravel(G), result.reshape(num_examples, self.n),
result = result.reshape(num_examples*self.times_to_stack_v, self.d)
return result
def scale_transformed_data(self, S, VX):
""" Scale mapped data VX to match kernel(e.g. RBF-Kernel) """
VX = VX.reshape(-1, self.times_to_stack_v*self.d)
return (1 / (self.sigma * np.sqrt(self.d)) *
np.multiply(np.ravel(S), VX))
def phi(self, X):
if self.tradeoff_mem_accuracy == 'accuracy':
m, n = X.shape
out = np.empty((m, 2 * n), dtype=X.dtype)
np.cos(X, out=out[:, :n])
np.sin(X, out=out[:, n:])
out /= np.sqrt()
#return (1 / np.sqrt(X.shape[1])) * \
# np.hstack([np.cos(X), np.sin(X)])
np.cos(X+self.U, X)
return X * np.sqrt(2. / X.shape[1])
def fit(self, X, y=None):
"""Fit the model with X.
Samples a couple of random based vectors to approximate a Gaussian
random projection matrix to generate n_components features.
X : {array-like}, shape (n_samples, n_features)
Training data, where n_samples in the number of samples
and n_features is the number of features.
self : object
Returns the transformer.
X = check_array(X)
d_orig = X.shape[1]
self.d, self.n, self.times_to_stack_v = \
self.number_of_features_to_pad_with_zeros = self.d - d_orig
self.G = self.rng.normal(size=(self.times_to_stack_v, self.d))
self.B = choice([-1, 1],
size=(self.times_to_stack_v, self.d),
self.P = np.hstack([(i*self.d)+self.rng.permutation(self.d)
for i in range(self.times_to_stack_v)])
self.S = np.multiply(1 / self.l2norm_along_axis1(self.G)
.reshape((-1, 1)),
size=(self.times_to_stack_v, self.d)))
self.U = self.uniform_vector()
return self
def transform(self, X):
"""Apply the approximate feature map to X.
X : {array-like}, shape (n_samples, n_features)
New data, where n_samples in the number of samples
and n_features is the number of features.
X_new : array-like, shape (n_samples, n_components)
X = check_array(X)
X_padded = self.pad_with_zeros(X)
HGPHBX = self.apply_approximate_gaussian_matrix(self.B,
VX = self.scale_transformed_data(self.S, HGPHBX)
return self.phi(VX)

This comment has been minimized.

Copy link

lucgiffon commented Oct 27, 2017

Thank you or you work.
Ive noticed something weird in the method phi. It looks like it has not been ended. I'm not an expert of fastfood but what is wrong with the statement:

return (1 / np.sqrt(X.shape[1])) * \
               np.hstack([np.cos(X), np.sin(X)])

that you commented? And what did you intend to do with this out variable?


Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.